IDEAS home Printed from https://ideas.repec.org/p/duk/dukeec/00-03.html
   My bibliography  Save this paper

Effective Nonparametric Estimation in the Case of Severely Discretized Data

Author

Listed:
  • Coppejans, Mark

Abstract

Almost all economic data sets are discretized or rounded to some extent. This paper proposes a regression and a density estimator that work especially well when the data is very discrete. The estimators are a weighted average of the data, and the weights are composed of cubic B-splines. Unlike most nonparametric settings, where it is assumed that the observed data comes from a continuum of possibilities, we base our work on the assumption that the discreteness becomes finer as the sample size increases. Rates of convergence and asymptotic distributional results are derived under this condition.

Suggested Citation

  • Coppejans, Mark, 2000. "Effective Nonparametric Estimation in the Case of Severely Discretized Data," Working Papers 00-03, Duke University, Department of Economics.
  • Handle: RePEc:duk:dukeec:00-03
    as

    Download full text from publisher

    File URL: http://www.econ.duke.edu/Papers/Abstracts00/abstract.00.03.html
    File Function: main text
    Download Restriction: no

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:duk:dukeec:00-03. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Department of Economics Webmaster). General contact details of provider: http://econ.duke.edu/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.