IDEAS home Printed from https://ideas.repec.org/p/dar/wpaper/124589.html

The Predictive Value of Data from Virtual Investment Communities

Author

Listed:
  • Abdel-Karim, Benjamin M.
  • Benlian, Alexander
  • Hinz, Oliver

Abstract

Optimal investment decisions by institutional investors require accurate predictions with respect to the development of stock markets. Motivated by previous research that revealed the unsatisfactory performance of existing stock market prediction models, this study proposes a novel prediction approach. Our proposed system combines Artificial Intelligence (AI) with data from Virtual Investment Communities (VICs) and leverages VICs’ ability to support the process of predicting stock markets. An empirical study with two different models using real data shows the potential of the AI-based system with VICs information as an instrument for stock market predictions. VICs can be a valuable addition but our results indicate that this type of data is only helpful in certain market phases.

Suggested Citation

  • Abdel-Karim, Benjamin M. & Benlian, Alexander & Hinz, Oliver, 2021. "The Predictive Value of Data from Virtual Investment Communities," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 124589, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
  • Handle: RePEc:dar:wpaper:124589
    Note: for complete metadata visit http://tubiblio.ulb.tu-darmstadt.de/124589/
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dar:wpaper:124589. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dekanatssekretariat (email available below). General contact details of provider: https://edirc.repec.org/data/ivthdde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.