IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/1290.html

A Computational Analysis of the Core of a Trading Economy with Three Competitive Equilibria and a Finite Number of Traders

Author

Abstract

In this paper we examine the structure of the core of a trading economy with three competitive equilibria as the number of traders (N) is varied. We also examine the sensitivity of the multiplicity of equilibria and of the core to variations in individual initial endowments. Computational results show that the core first splits into two pieces at N = 5 and then splits a second time into three pieces at N = 12. Both of these splits occur not at a point but as a contiguous gap. As N is increased further, the core shrinks by N = 600 with essentially only the 3 competitive equilibria remaining. We find that the speed of convergence of the core toward the three competitive equilibria is not uniform. Initially, for small N, it is not of the order 1/N but when N is large, the convergence rate is approximately of the order 1/N. Small variations in the initial individual endowments along the price rays to the competitive equilibria make the respective competitive equilibrium (CE) unique and once a CE becomes unique, it remains so for all allocations on the price ray. Sensitivity analysis of the core reveals that in the large part of the endowment space where the competitive equilibrium is unique, the core either converges to the single CE or it splits into two segments, one of which converges to the CE and the other disappears.

Suggested Citation

  • Martin Shubik & Alok Kumar, 2001. "A Computational Analysis of the Core of a Trading Economy with Three Competitive Equilibria and a Finite Number of Traders," Cowles Foundation Discussion Papers 1290, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:1290
    Note: CFP 1135.
    as

    Download full text from publisher

    File URL: https://cowles.yale.edu/sites/default/files/files/pub/d12/d1290.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C62 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Existence and Stability Conditions of Equilibrium
    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Brittany Ladd (email available below). General contact details of provider: https://edirc.repec.org/data/cowleus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.