IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Two-sided reflection problem for the Markov modulated Brownian motion

Listed author(s):
  • D'Auria, Bernardo
  • Kella, Offer
  • Ivanovs, Jevgenijs
  • Mandjes, Michel
Registered author(s):

    In this paper we consider the two-sided reflection of a Markov modulated Brownian motion by analyzing the spectral properties of the matrix polynomial associated with the generator of the free process. We show how to compute for the general case the Laplace transform of the stationary distribution and the average loss rates at both barriers for the reflected process. This work extends previous partial results by broadening and completing the analysis for the special cases when the spectrum of the generator is nonsemi- simple, and for the delicate case where the asymptotic drift of the process is zero.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by Universidad Carlos III de Madrid. Departamento de Estadística in its series DES - Working Papers. Statistics and Econometrics. WS with number ws104024.

    in new window

    Date of creation: Oct 2010
    Handle: RePEc:cte:wsrepe:ws104024
    Contact details of provider: Web page:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws104024. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ana Poveda)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.