IDEAS home Printed from
   My bibliography  Save this paper

Sensitivity and robustness in MDS configurations for mixed-type data: a study of the economic crisis impact on socially vulnerable Spanish people


  • Grané, Aurea
  • Romera, Rosario


Multidimensional scaling (MDS) techniques are initially proposed to produce pictorial representations of distance, dissimilarity or proximity data. Sensitivity and robustness assessment of multivariate methods is essential if inferences are to be drawn from the analysis. To our knowledge, the literature related to MDS for mixed-type data, including variables measured at continuous level besides categorical ones, is quite scarce. The main motivation of this work was to analyze the stability and robustness of MDS configurations as an extension of a previous study on a real data set, coming from a panel-type analysis designed to assess the economic crisis impact on Spanish people who were in situations of high risk of being socially excluded. The main contributions of the paper on the treatment of MDS configurations for mixed-type data are: (i) to propose a joint metric based on distance matrices computed for continuous, multi-scale categorical and/or binary variables, (ii) to introduce a systematic analysis on the sensitivity of MDS configurations and (iii) to present a systematic search for robustness and identification of outliers through a new procedure based on geometric variability notions.

Suggested Citation

  • Grané, Aurea & Romera, Rosario, 2010. "Sensitivity and robustness in MDS configurations for mixed-type data: a study of the economic crisis impact on socially vulnerable Spanish people," DES - Working Papers. Statistics and Econometrics. WS ws103519, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:ws103519

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Peter Christoffersen & Sílvia Gonçalves, 2004. "Estimation Risk in Financial Risk Management," CIRANO Working Papers 2004s-15, CIRANO.
    2. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    3. Yamai, Yasuhiro & Yoshiba, Toshinao, 2005. "Value-at-risk versus expected shortfall: A practical perspective," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 997-1015, April.
    4. Pascual, Lorenzo & Romo, Juan & Ruiz, Esther, 2006. "Bootstrap prediction for returns and volatilities in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2293-2312, May.
    5. Song Xi Chen, 2005. "Nonparametric Inference of Value-at-Risk for Dependent Financial Returns," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 3(2), pages 227-255.
    6. Peter Hall & Qiwei Yao, 2003. "Data tilting for time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 425-442.
    7. Basak, Suleyman & Shapiro, Alexander, 2001. "Value-at-Risk-Based Risk Management: Optimal Policies and Asset Prices," Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 371-405.
    8. Bams, Dennis & Lehnert, Thorsten & Wolff, Christian C.P., 2005. "An evaluation framework for alternative VaR-models," Journal of International Money and Finance, Elsevier, vol. 24(6), pages 944-958, October.
    9. Hartz, Christoph & Mittnik, Stefan & Paolella, Marc, 2006. "Accurate value-at-risk forecasting based on the normal-GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2295-2312, December.
    10. Hang Chan, Ngai & Deng, Shi-Jie & Peng, Liang & Xia, Zhendong, 2007. "Interval estimation of value-at-risk based on GARCH models with heavy-tailed innovations," Journal of Econometrics, Elsevier, vol. 137(2), pages 556-576, April.
    11. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    12. Jeremy Berkowitz & Lutz Kilian, 2000. "Recent developments in bootstrapping time series," Econometric Reviews, Taylor & Francis Journals, vol. 19(1), pages 1-48.
    13. Manfred Gilli & Evis këllezi, 2006. "An Application of Extreme Value Theory for Measuring Financial Risk," Computational Economics, Springer;Society for Computational Economics, vol. 27(2), pages 207-228, May.
    14. Carlo Acerbi & Dirk Tasche, 2001. "Expected Shortfall: a natural coherent alternative to Value at Risk," Papers cond-mat/0105191,
    15. Carlo Acerbi & Dirk Tasche, 2002. "Expected Shortfall: A Natural Coherent Alternative to Value at Risk," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 31(2), pages 379-388, July.
    Full references (including those not matched with items on IDEAS)

    More about this item


    MDS configurations;

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws103519. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ana Poveda). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.