IDEAS home Printed from
   My bibliography  Save this paper

Two-stage index computation for bandits with switching penalties II : switching delays


  • Niño-Mora, José


This paper addresses the multi-armed bandit problem with switching penalties including both costs and delays, extending results of the companion paper [J. Niño-Mora. "Two-Stage Index Computation for Bandits with Switching Penalties I: Switching Costs". Conditionally accepted at INFORMS J. Comp.], which addressed the no switching delays case. Asawa and Teneketzis (1996) introduced an index for bandits with delays that partly characterizes optimal policies, attaching to each bandit state a "continuation index" (its Gittins index) and a "switching index", yet gave no algorithm for it. This paper presents an efficient, decoupled computation method, which in a first stage computes the continuation index and then, in a second stage, computes the switching index an order of magnitude faster in at most (5/2)n^3+O(n) arithmetic operations for an n -state bandit. The paper exploits the fact that the Asawa and Teneketzis index is the Whittle, or marginal productivity, index of a classic bandit with switching penalties in its semi- Markov restless reformulation, by deploying work-reward analysis and LP-indexability methods introduced by the author. A computational study demonstrates the dramatic runtime savings achieved by the new algorithm, the near-optimality of the index policy, and its substantial gains against a benchmark index policy across a wide instance range.

Suggested Citation

  • Niño-Mora, José, 2007. "Two-stage index computation for bandits with switching penalties II : switching delays," DES - Working Papers. Statistics and Econometrics. WS ws074210, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:ws074210

    Download full text from publisher

    File URL:
    Download Restriction: no

    More about this item


    Dynamic programming;

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws074210. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ana Poveda). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.