IDEAS home Printed from
   My bibliography  Save this paper

Depth functions based on a number of observations of a random vector


  • Cascos, Ignacio


We present two statistical depth functions given in terms of the random variable defined as the minimum number of observations of a random vector that are needed to include a fixed given point in their convex hull. This random variable measures the degree of outlyingness of a point with respect to a probability distribution. We take advantage of this in order to define the new depth functions. Further, a technique to compute the probability that a point is included in the convex hull of a given number of i.i.d. random vectors is presented. Consider the sequence of random sets whose n-th element is the convex hull of $n$ independent copies of a random vector. Their sequence of selection expectations is nested and we derive a depth function from it. The relation of this depth function with the linear convex stochastic order is investigated and a multivariate extension of the Gini mean difference is defined in terms of the selection expectation of the convex hull of two independent copies of a random vector.

Suggested Citation

  • Cascos, Ignacio, 2007. "Depth functions based on a number of observations of a random vector," DES - Working Papers. Statistics and Econometrics. WS ws072907, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:ws072907

    Download full text from publisher

    File URL:
    Download Restriction: no


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Ignacio Cascos & Ilya Molchanov, 2007. "Multivariate risks and depth-trimmed regions," Finance and Stochastics, Springer, vol. 11(3), pages 373-397, July.

    More about this item


    Linear convex stochastic order;

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws072907. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ana Poveda). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.