IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Depth functions based on a number of observations of a random vector

Listed author(s):
  • Cascos, Ignacio
Registered author(s):

    We present two statistical depth functions given in terms of the random variable defined as the minimum number of observations of a random vector that are needed to include a fixed given point in their convex hull. This random variable measures the degree of outlyingness of a point with respect to a probability distribution. We take advantage of this in order to define the new depth functions. Further, a technique to compute the probability that a point is included in the convex hull of a given number of i.i.d. random vectors is presented. Consider the sequence of random sets whose n-th element is the convex hull of $n$ independent copies of a random vector. Their sequence of selection expectations is nested and we derive a depth function from it. The relation of this depth function with the linear convex stochastic order is investigated and a multivariate extension of the Gini mean difference is defined in terms of the selection expectation of the convex hull of two independent copies of a random vector.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by Universidad Carlos III de Madrid. Departamento de Estadística in its series DES - Working Papers. Statistics and Econometrics. WS with number ws072907.

    in new window

    Date of creation: Apr 2007
    Handle: RePEc:cte:wsrepe:ws072907
    Contact details of provider: Web page:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:ws072907. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ana Poveda)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.