IDEAS home Printed from
   My bibliography  Save this paper

Prédiction of Chaotic Time Series in the Presence of Measurement Error : The Importance of Initial Conditions


  • Dominique Guegan


  • Rolf Tschernig



n this paper we argue that even if a dynamic relationship can be well described by a deterministic system, retrieving this relationship from an empirical time series has to take into account some, although possibly very small measurement error in the observations. Therefore, measuring the initial conditions for prediction may become much more difficult since one now has a combination of deterministic and stochastic elements. We introduce a partial smoothing estimator for estimating the unobserved initial conditions. We will show that this estimator allows to reduce the effects of measurement error for predictions although the reduction may be small in the presence of strong chaotic dynamics. This will be illustrated using the logistic map.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Dominique Guegan & Rolf Tschernig, 1998. "Prédiction of Chaotic Time Series in the Presence of Measurement Error : The Importance of Initial Conditions," Working Papers 98-02, Center for Research in Economics and Statistics.
  • Handle: RePEc:crs:wpaper:98-02

    Download full text from publisher

    File URL:
    File Function: Crest working paper version
    Download Restriction: no

    Other versions of this item:

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:crs:wpaper:98-02. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sri Srikandan). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.