IDEAS home Printed from https://ideas.repec.org/p/cor/louvrp/3233.html
   My bibliography  Save this paper

Computing Closest Stable Nonnegative Matrix

Author

Listed:
  • Nesterov, Yurii

    (Université catholique de Louvain, LIDAM/CORE, Belgium)

  • Protasov, Vladimir

Abstract

The problem of finding the closest stable matrix for a dynamical system has many applications. It is studied for both continuous and discrete-time systems and the corresponding optimization problems are formulated for various matrix norms. As a rule, nonconvexity of these formulations does not allow finding their global solutions. In this paper, we analyze positive discrete-time systems. They also suffer from nonconvexity of the stability region, and the problem in the Frobenius norm or in the Euclidean norm remains hard for them. However, it turns out that for certain polyhedral norms, the situation is much better. We show that for the distances measured in the max-norm, we can find an exact solution of the corresponding nonconvex projection problems in polynomial time. For the distance measured in the operator `∞-norm or `1-norm, the exact solution is also efficiently found. To this end, we develop a modification of the recently introduced spectral simplex method. On the other hand, for all these three norms, we obtain exact descriptions of the region of stability around a given stable matrix. In the case of the max-norm, this can be seen as an extension onto the class of nonnegative matrices, the Kharitonov theorem, providing a stability criterion for polynomials with interval coefficients [V. L Kharitonov, Differ. Uravn., 14 (1978), pp. 2086-2088; K. Panneerselvam and R. Ayyagari, Internat. J. Control Sci. Engrg., 3 (2013), pp. 81-85]. For practical implementation of our technique, we developed a new method for approximating the maximal eigenvalue of a nonnegative matrix. It combines the local quadratic rate of convergence with polynomial-time global performance guarantees.

Suggested Citation

  • Nesterov, Yurii & Protasov, Vladimir, 2023. "Computing Closest Stable Nonnegative Matrix," LIDAM Reprints CORE 3233, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvrp:3233
    DOI: https://doi.org/10.1137/17M1144568
    Note: In: SIAM Journal on Matrix Analysis and Applications, 2020, vol. 41(1), p. 1-28
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvrp:3233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alain GILLIS (email available below). General contact details of provider: https://edirc.repec.org/data/coreebe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.