IDEAS home Printed from https://ideas.repec.org/p/cor/louvrp/2567.html

A continuous characterization of the maximum-edge biclique problem

Author

Listed:
  • GILLIS, Nicolas
  • GLINEUR, François

Abstract

The problem of finding large complete subgraphs in bipartite graphs (that is, bicliques) is a well-known combinatorial optimization problem referred to as the maximum-edge biclique problem (MBP), and has many applications, e.g., in web community discovery, biological data analysis and text mining. In this paper, we present a new continuous characterization for MBP. Given a bipartite graph $$G$$ , we are able to formulate a continuous optimization problem (namely, an approximate rank-one matrix factorization problem with nonnegativity constraints, R1N for short), and show that there is a one-to-one correspondence between (1) the maximum (i.e., the largest) bicliques of $$G$$ and the global minima of R1N, and (2) the maximal bicliques of $$G$$ (i.e., bicliques not contained in any larger biclique) and the local minima of R1N. We also show that any stationary points of R1N must be close to a biclique of $$G$$ . This allows us to design a new type of biclique finding algorithm based on the application of a block-coordinate descent scheme to R1N. We show that this algorithm, whose algorithmic complexity per iteration is proportional to the number of edges in the graph, is guaranteed to converge to a biclique and that it performs competitively with existing methods on random graphs and text mining datasets. Finally, we show how R1N is closely related to the Motzkin–Strauss formalism for cliques. Copyright Springer Science+Business Media New York 2014
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • GILLIS, Nicolas & GLINEUR, François, 2014. "A continuous characterization of the maximum-edge biclique problem," LIDAM Reprints CORE 2567, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvrp:2567
    Note: In : Journal of Global Optimization, 58(3), 439-464, 2014
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Melisew Tefera Belachew & Nicolas Gillis, 2017. "Solving the Maximum Clique Problem with Symmetric Rank-One Non-negative Matrix Approximation," Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 279-296, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvrp:2567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alain GILLIS (email available below). General contact details of provider: https://edirc.repec.org/data/coreebe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.