IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Polynomial-time computation of the joint spectral radius for some sets of nonnegative matrices

Listed author(s):
  • BLONDEL, Vincent

    (UNIVERSITE CATHOLIQUE DE LOUVAIN, Division of Applied Mathematics)


    (Université catholique de Louvain (UCL). Center for Operations Research and Econometrics (CORE))

Registered author(s):

    We propose two simple upper bounds for the joint spectral radius of sets of nonnegative matrices. These bounds, the joint column radius and the joint row radius, can be computed in polynomial time as solutions of convex optimization problems. We show that for general matrices these bounds are within a factor 1/n of the exact value, where n is the size of the matrices. Moreover, for sets of matrices with independent column uncertainties of with independent row uncertainties, the corresponding bounds coincide with the joint spectral radius. In these cases, the joint spectral radius is also given by the largest spectral radius of the matrices in the set. As a byproduct of these results, we propose a polynomial-time technique for solving Boolean optimization problems related to the spectral radius. We also consider economics and engineering applications of our results which were never considered practice due to their intrinsic computational complexity.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by Université catholique de Louvain, Center for Operations Research and Econometrics (CORE) in its series CORE Discussion Papers with number 2008034.

    in new window

    Date of creation: 01 May 2008
    Handle: RePEc:cor:louvco:2008034
    Contact details of provider: Postal:
    Voie du Roman Pays 34, 1348 Louvain-la-Neuve (Belgium)

    Phone: 32(10)474321
    Fax: +32 10474304
    Web page:

    More information through EDIRC

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:cor:louvco:2008034. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Alain GILLIS)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.