IDEAS home Printed from https://ideas.repec.org/p/cor/louvco/2008005.html
   My bibliography  Save this paper

Efficiency gains and mergers

Author

Listed:
  • DE FEO, Giuseppe

    (Université catholique de Louvain (UCL). Center for Operations Research and Econometrics (CORE))

Abstract

In the theoretical literature, strong arguments have been provided in support of the efficiency defense in antitrust merger policy. One of the most often cited results is due to Williamson (1968) that shows how relatively small reduction in cost could offset the deadweight loss of a large price increase. Furthermore, Salant et al. (1983) demonstrate that (not for monopoly) mergers are unprofitable absent efficiency gains. The general result, drawn in a Cournot framework by Farrell and Shapiro (1990), is that (not too large) mergers that are profitable are always welfare improving. In the present work we challenge the conclusions of this literature in two aspects. First, we show that Williamson's results underestimate the welfare loss due to a price increase and overestimate the effect of efficiency gains. Then, we prove that the conditions for welfare improving mergers defined by Farrell and Shapiro (1990) hold true only when consumers are adversely affected. This seems an argument to disregard their policy prescriptions when antitrust authorities are more "consumers-oriented". In this respect, we provide a necessary and sufficient condition for a consumer surplus improving merger: in a two firm merger, efficiency gains must be larger than the pre-merger average markup.

Suggested Citation

  • DE FEO, Giuseppe, 2008. "Efficiency gains and mergers," CORE Discussion Papers 2008005, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  • Handle: RePEc:cor:louvco:2008005
    as

    Download full text from publisher

    File URL: http://www.uclouvain.be/cps/ucl/doc/core/documents/coredp2008_5.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Vlaar, Peter J G & Palm, Franz C, 1993. "The Message in Weekly Exchange Rates in the European Monetary System: Mean Reversion, Conditional Heteroscedasticity, and Jumps," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(3), pages 351-360, July.
    2. Ivana Komunjer, 2007. "Asymmetric power distribution: Theory and applications to risk measurement," Journal of Applied Econometrics, John Wiley & Sons, Ltd., pages 891-921.
    3. L. Bauwens & J. V. K. Rombouts, 2007. "Bayesian Clustering of Many Garch Models," Econometric Reviews, Taylor & Francis Journals, pages 365-386.
    4. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    5. Kim, Dongcheol & Kon, Stanley J, 1994. "Alternative Models for the Conditional Heteroscedasticity of Stock Returns," The Journal of Business, University of Chicago Press, vol. 67(4), pages 563-598, October.
    6. Bauwens, L. & Hafner, C.M. & Rombouts, J.V.K., 2007. "Multivariate mixed normal conditional heteroskedasticity," Computational Statistics & Data Analysis, Elsevier, pages 3551-3566.
    7. Keith Kuester & Stefan Mittnik & Marc S. Paolella, 2006. "Value-at-Risk Prediction: A Comparison of Alternative Strategies," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(1), pages 53-89.
    8. Markus Haas, 2004. "Mixed Normal Conditional Heteroskedasticity," Journal of Financial Econometrics, Society for Financial Econometrics, pages 211-250.
    9. Mittnik, Stefan & Paolella, Marc S. & Rachev, Svetlozar T., 2002. "Stationarity of stable power-GARCH processes," Journal of Econometrics, Elsevier, vol. 106(1), pages 97-107, January.
    10. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    11. Thomas Mikosch & Catalin Starica, 2004. "Non-stationarities in financial time series, the long range dependence and the IGARCH effects," Econometrics 0412005, EconWPA.
    12. Roman Liesenfeld & Robert C. Jung, 2000. "Stochastic volatility models: conditional normality versus heavy-tailed distributions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., pages 137-160.
    13. Gikas A. Hardouvelis & Panayiotis Theodossiou, 2002. "The Asymmetric Relation Between Initial Margin Requirements and Stock Market Volatility Across Bull and Bear Markets," Review of Financial Studies, Society for Financial Studies, vol. 15(5), pages 1525-1560.
    14. Chris Brooks, 2005. "Autoregressive Conditional Kurtosis," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 3(3), pages 399-421.
    15. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. " On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    16. Fruhwirth-Schnatter, Sylvia & Kaufmann, Sylvia, 2008. "Model-Based Clustering of Multiple Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 78-89, January.
    17. C. S. Wong & W. K. Li, 2000. "On a mixture autoregressive model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(1), pages 95-115.
    18. Engle, Robert F & Ng, Victor K, 1993. " Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    19. Harvey, Campbell R. & Siddique, Akhtar, 1999. "Autoregressive Conditional Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(04), pages 465-487, December.
    20. Geweke, John & Keane, Michael, 2007. "Smoothly mixing regressions," Journal of Econometrics, Elsevier, vol. 138(1), pages 252-290, May.
    21. Markus Haas & Stefan Mittnik & Marc Paolella, 2006. "Modelling and predicting market risk with Laplace-Gaussian mixture distributions," Applied Financial Economics, Taylor & Francis Journals, pages 1145-1162.
    22. Tucker, Alan L & Pond, Lallon, 1988. "The Probability Distribution of Foreign Exchange Price Changes: Tests of Candidate Processes," The Review of Economics and Statistics, MIT Press, vol. 70(4), pages 638-647, November.
    23. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
    24. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
    25. Thomas Mikosch & Cătălin Stărică, 2004. "Nonstationarities in Financial Time Series, the Long-Range Dependence, and the IGARCH Effects," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 378-390, February.
    26. Emese Lazar & Carol Alexander, 2006. "Normal mixture GARCH(1,1): applications to exchange rate modelling," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 307-336.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    mergers; efficiency gains; Cournot oligopoly.;

    JEL classification:

    • D43 - Microeconomics - - Market Structure, Pricing, and Design - - - Oligopoly and Other Forms of Market Imperfection
    • L11 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - Production, Pricing, and Market Structure; Size Distribution of Firms
    • L22 - Industrial Organization - - Firm Objectives, Organization, and Behavior - - - Firm Organization and Market Structure

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvco:2008005. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Alain GILLIS). General contact details of provider: http://edirc.repec.org/data/coreebe.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.