IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Primal-dual subgradient methods for convex problems

  • NESTEROV, Yu.
Registered author(s):

    In this paper we present a new approach for constructing subgradient schemes for different types of nonsmooth problems with convex structure. Our methods are primaldual since they are always able to generate a feasible approximation to the optimum of an appropriately formulated dual problem. Besides other advantages, this useful feature provides the methods with a reliable stopping criterion. The proposed schemes differ from the classical approaches (divergent series methods, mirror descent methods) by presence of two control sequences. The first sequence is responsible for aggregating the support functions in the dual space, and the second one establishes a dynamically updated scale between the primal and dual spaces. This additional flexibility allows to guarantee a boundedness of the sequence of primal test points even in the case of unbounded feasible set. We present the variants of subgradient schemes for nonsmooth convex minimization, minimax problems, saddle point problems, variational inequalities, and stochastic optimization. In all situations our methods are proved to be optimal from the view point of worst-case black-box lower complexity bounds.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://alfresco.uclouvain.be/alfresco/download/attach/workspace/SpacesStore/bff182b3-69fe-403e-aeb0-bf89d4de2046/coredp_2005_67.pdf
    Download Restriction: no

    Paper provided by Université catholique de Louvain, Center for Operations Research and Econometrics (CORE) in its series CORE Discussion Papers with number 2005067.

    as
    in new window

    Length:
    Date of creation: 00 Oct 2005
    Date of revision:
    Handle: RePEc:cor:louvco:2005067
    Contact details of provider: Postal: Voie du Roman Pays 34, 1348 Louvain-la-Neuve (Belgium)
    Phone: 32(10)474321
    Fax: +32 10474304
    Web page: http://www.uclouvain.be/core
    Email:


    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. NESTEROV, Yu & VIAL, Jean-Philippe, 2000. "Confidence level solutions for stochastic programming," CORE Discussion Papers 2000013, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Nesterov, Y. & Vial, J.-P., 2000. "Confidence Level Solutions for Stochastic Programming," Papers 2000.05, Ecole des Hautes Etudes Commerciales, Universite de Geneve-.
    3. NESTEROV, Yu, 2003. "Dual extrapolation and its applications for solving variational inequalities and related problems," CORE Discussion Papers 2003068, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:cor:louvco:2005067. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Alain GILLIS)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.