IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Inference Robustness in Multivariate Models with a Scale Parameter

  • FERNANDEZ, Carmen

    (Institut de Statistique, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium)

  • OSIEWALSKI, Jacek

    (Department of Econometrics, Academy of Economics; Krakow, Poland and CORE, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium)

  • STEEL, Mark FJ.

    (CentER for Economic Research and Dept of Econometrics, Tilburg University, The Netherlands)

We formulate a general representation of points z E Rn - {O} in terms of pairs (y, r), where r > 0, y lies in some space y, and z = ry. In addition, we impose that the representation is unique. An example of such a representation is polar coordinates. As an immediate consequence, we can represent random variables Z that take values in Rn - {O} as Z = RY, where R is a positive random variable and Y takes values in y. By fixing the distribution of either R or Y, while imposing independence between them, we generate classes of distributions on Rn. Many families of multivariate distributions, like e.g. spherical, lq-spherical, v-spherical and anisotropic, can be interpreted in this unifying framework. Some classical inference procedures can be shown to be completely robust in these classes of multivariate distributions. These findings are used in the practically relevant contexts of location-scale and pure scale models. Finally, we present a robust Bayesian analysis for the same models and indicate the links between classical and Bayesian results. In particular, for the regression model with Li.d. errors up to a scale: a formal characterization is provided for both classical and Bayesian robustness results concerning inference on the regression parameters.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://alfresco.uclouvain.be/alfresco/download/attach/workspace/SpacesStore/64e84753-f747-40fa-be88-fa0b5b7bccf3/coredp_1995_30.pdf
Download Restriction: no

Paper provided by Université catholique de Louvain, Center for Operations Research and Econometrics (CORE) in its series CORE Discussion Papers with number 1995030.

as
in new window

Length:
Date of creation: 01 May 1995
Date of revision:
Handle: RePEc:cor:louvco:1995030
Contact details of provider: Postal: Voie du Roman Pays 34, 1348 Louvain-la-Neuve (Belgium)
Phone: 32(10)474321
Fax: +32 10474304
Web page: http://www.uclouvain.be/core
Email:


More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cor:louvco:1995030. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Alain GILLIS)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.