IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Unawareness : A Formal Theory of Unforeseen Contingencies. Part I

Listed author(s):
  • MODICA, Salvatore

    (CORE, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium and Universita di Palermo)


    (CORE, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium and Universita di Palermo)

This is the first of a sequence of two papers where we present a formal model of unawareness. We contrast unawareness with certainty and uncertainty. A subject is certain of something when he knows that thing; he is uncertain when he does not know it, but he knows he does not: he is consciously uncertain. On the other hand, he is unaware of something when he does not know it, and he does not know he does not know, and so on ad infinitum: he does not perceive, does not have in mind, the object of knowledge. The opposite of unawareness is awareness, which includes certainty and uncertainty. This paper has three main purposes. First, we formalize the concept of awareness, and introduce a symmetry axiom which states that a subject can be aware of something, [ phi ] say, if and only if he is aware of its negation not-cp; in other words, that [ phi ] and not-[ phi ] are perceived together, or neither is. We then derive the basic properties of awareness. The second purpose is to prove a different axiomatic characterization, based on the concept of awareness, of the system which underlies the model of information with partitional structures (known as S5). The third purpose of this paper is to show that without a substantial weakening of the rules of inferences normally assumed in modal logic a satisfactory model of unawareness, which includes the symmetry axiom, is impossible. This alternative approach is developed in a second paper by the same authors.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Université catholique de Louvain, Center for Operations Research and Econometrics (CORE) in its series CORE Discussion Papers with number 1993036.

in new window

Date of creation: 01 Oct 1993
Handle: RePEc:cor:louvco:1993036
Contact details of provider: Postal:
Voie du Roman Pays 34, 1348 Louvain-la-Neuve (Belgium)

Phone: 32(10)474321
Fax: +32 10474304
Web page:

More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cor:louvco:1993036. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Alain GILLIS)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.