IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Consistent Bayesian Aggregation

Listed author(s):
  • MONGIN, Philippe

The paper investigates the aggregation of first of all nonatomic subjective probabilities, second Savagean orderings, subject to the twofold consistency constraint that: (i) the aggregate is a subjective probability or a Savagean ordering, respectively; (ii) it satisfies the Pareto principle. Throughout the paper aggregation is viewed as a single profile exercise. In the case of nonatomic probabilities affine aggregative rules are the only solutions to the consistency problem; the coefficient sign may be determined by applying the stronger Pareto conditions (Propositions 1 and 2) . Speeial unanimity properties result from the assumption of nonatomicity (Proposition 3) . In the case of Savage an orderings even the existence of consistent solutions becomes a problem (Example 3). Under Pareto-indifference alone, as well as under any other Pareto condition when some minimum unanimity condition holds, solutions have to satisfy the overdetermined constraint that both the aggregate utility and the aggregate probability are affine in terms of the corresponding individual items (Propositions 4 and 6). This uniqueness result is shown to imply two Impossibility Theorems. Under Pareto indifference, as well as Weak Pareto when minimum unanimity prevails, affinely independent probabilities or utilities lead to some form of dictatorship (Proposition 5). Under Strong Pareto and minimum agreement the same independence assumptions lead to sheer impossibility unless either the utilities or the probabilities, respectively, are identical (Proposition 7). Nontrivial affine decompositions may exist in case of affine dependence (Example 4).

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Université catholique de Louvain, Center for Operations Research and Econometrics (CORE) in its series CORE Discussion Papers with number 1993019.

in new window

Date of creation: 01 May 1993
Handle: RePEc:cor:louvco:1993019
Contact details of provider: Postal:
Voie du Roman Pays 34, 1348 Louvain-la-Neuve (Belgium)

Phone: 32(10)474321
Fax: +32 10474304
Web page:

More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cor:louvco:1993019. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Alain GILLIS)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.