IDEAS home Printed from https://ideas.repec.org/p/col/000482/012677.html
   My bibliography  Save this paper

Análisis espacial de la pobreza multidimensional en Colombia a partir del censo de población de 2005

Author

Listed:
  • Laura Estrada Arbeláez
  • Sandra Liliana Moreno Mayorga

Abstract

En este documento se explora la dimensión espacial de la pobreza multidimensional en Colombia a nivel municipal, usando el Censo de Población de 2005 y el software de Sistemas de Información Geográfica (SIG) ArcGIS 10.1 de ESRI. La metodología incluye elaboración de mapas de pobreza, análisis exploratorio de datos espaciales, análisis de tendencia, y pruebas de autocorrelación espacial global y local (índice de Moran y Anselin local de Moran). Se encuentra que la pobreza multidimensional presenta autocorrelación espacial positiva; es decir, los municipios pobres tienden a estar rodeados de municipios pobres, y viceversa. Se identifican polos y corredores de bienestar en la región andina; conglomerados de pobreza al sur del país y en las costas Pacífica y Caribe, que se caracterizan por ser discontinuos y exhibir una marcada diferencia entre los niveles municipal total, área urbana (cabecera) y área rural (resto); y atípicos espaciales, municipios con bajo nivel de pobreza rodeados de municipios con alto nivel de pobreza y viceversa. ***** This document explores the spatial aspect of multidimensional poverty in Colombia on a municipal level using the 2005 Population Census and ESRI’s ArcGIS 10.1 Geographic Information Systems (GIS) software. Methodology includes poverty mapping using GIS-based, exploratory spatial data analysis, trend analysis, and global and local autocorrelation tests (Moran’s I and Anselin Local Moran’s I). The findings suggest that multidimensional poverty demonstrates positive spatial autocorrelation, meaning poorer municipalities tend to cluster around each other, and vice versa. Hubs and paths of prosperity can be found in the Andean Region, while poverty clusters can be found in the south of the country and along the Pacific and Caribbean coasts. These clusters are characterized by being discontinuous and showing a notable difference in poverty levels between urban (cabecera) and rural (resto) areas. Spatial outliers, municipalities with low levels of poverty relative to surrounding municipalities and vice versa, are identified

Suggested Citation

  • Laura Estrada Arbeláez & Sandra Liliana Moreno Mayorga, 2013. "Análisis espacial de la pobreza multidimensional en Colombia a partir del censo de población de 2005," Revista IB 12677, Departamento Administrativo Nacional de Estadística - DANE.
  • Handle: RePEc:col:000482:012677
    as

    Download full text from publisher

    File URL: http://www.dane.gov.co/candane/images/Publicaciones/magazinv_2013/articulo_laura_estrada_2013.pdf
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:col:000482:012677. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Editor (email available below). General contact details of provider: https://edirc.repec.org/data/daneeco.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.