IDEAS home Printed from
   My bibliography  Save this paper

A test of singularity for distribution functions


  • Victoria Zinde-Walsh
  • John Galbraith


Many non- and semi- parametric estimators have asymptotic properties that have been established under conditions that exclude the possibility of singular parts in the distribution. It is thus important to be able to test for absence of singularities. Methods of testing that focus on specific singularities do exist, but there are few generally applicable approaches. A general test based on kernel density estimation was proposed by Frigyesi and Hössjer (1998), but this statistic can diverge for some absolutely continuous distributions. Here we use a result in Zinde-Walsh (2008) to characterize distributions with varying degrees of smoothness, via functionals that reveal the behavior of the bias of the kernel density estimator. The statistics proposed here have well defined asymptotic distributions that are asymptotically pivotal in some class of distributions (e.g. for continuous density) and diverge for distributions in an alternative class, at a rate that can be explicitly evaluated and controlled.

Suggested Citation

  • Victoria Zinde-Walsh & John Galbraith, 2011. "A test of singularity for distribution functions," CIRANO Working Papers 2011s-06, CIRANO.
  • Handle: RePEc:cir:cirwor:2011s-06

    Download full text from publisher

    File URL:
    Download Restriction: no

    More about this item


    generalized function; kernel density estimator; singularity ;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2011s-06. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Webmaster). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.