IDEAS home Printed from
   My bibliography  Save this paper

On the use of the sample partial autocorrelation for order determination in a pure autoregressive process: A Monte Carlo study and empirical example


  • Andy C.C. Kwan
  • Yangru Wu


Sample partial autocorrelations are one of the main statistical tools of time series analysis. They are especially useful in identifying the order of an AR(p) process. In this note, we show via a simulation experiment that normalizing each sample partial autocorrelation with Anderson's (1993a) means and variances, instead of the large-sample moments, can yield asymptotic distributions that are better approximated by the N(0,1) distribution. The important implication of this result is that the true order of a pure autoregressive process can be incorrectly identified due to use of the large-sample mean and variance of sample partial autocorrelations. An empirical example given in Box and Jenkins (1976) is used to highlight this problem.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Andy C.C. Kwan & Yangru Wu, 2002. "On the use of the sample partial autocorrelation for order determination in a pure autoregressive process: A Monte Carlo study and empirical example," Departmental Working Papers _144, Chinese University of Hong Kong, Department of Economics.
  • Handle: RePEc:chk:cuhked:_144

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. A. C. C. Kwan, 2003. "Sample partial autocorrelations and portmanteau tests for randomness," Applied Economics Letters, Taylor & Francis Journals, vol. 10(10), pages 605-609.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:chk:cuhked:_144. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.