IDEAS home Printed from https://ideas.repec.org/p/chf/rpseri/rp2580.html
   My bibliography  Save this paper

Catching Crypto Trends; A Tactical Approach for Bitcoin and Altcoins

Author

Listed:
  • Carlo Zarattini

    (Concretum Group)

  • Alberto Pagani

    (University of Parma)

  • Andrea Barbon

    (University of St. Gallen; University of St.Gallen)

Abstract

In recent years, cryptocurrencies have attracted significant attention from both retail traders and large institutional investors. As their involvement in digital assets grows, so does their interest in active and risk-aware investment frameworks. This paper applies a well-established trend-following methodology, successfully deployed for decades in traditional asset classes, to Bitcoin, and then extends the analysis to a comprehensive, survivorship bias-free dataset covering all cryptocurrencies traded since 2015, to evaluate whether its robustness persists in the emerging digital asset space. We propose an ensemble approach that aggregates multiple Donchian channel-based trend models, each calibrated with different lookback periods, into a single signal, as well as a volatility-based position sizing method. This model, applied to a rotational portfolio of the top 20 most liquid coins, achieved notable net-of-fees returns, with a Sharpe ratio above 1.5 and an annualized alpha of 10.8% versus Bitcoin. While assessing the impact of transaction costs, we propose a straightforward yet effective portfolio technique to mitigate these expenses. Finally, we investigate correlations between crypto-focused trend-following strategies and those applied to traditional asset classes, concluding with a discussion on how investors can execute the proposed strategy through both on-chain and off-chain implementations.

Suggested Citation

  • Carlo Zarattini & Alberto Pagani & Andrea Barbon, 2025. "Catching Crypto Trends; A Tactical Approach for Bitcoin and Altcoins," Swiss Finance Institute Research Paper Series 25-80, Swiss Finance Institute.
  • Handle: RePEc:chf:rpseri:rp2580
    as

    Download full text from publisher

    File URL: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5209907
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:chf:rpseri:rp2580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ridima Mittal (email available below). General contact details of provider: https://edirc.repec.org/data/fameech.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.