IDEAS home Printed from https://ideas.repec.org/p/chf/rpseri/rp2096.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this paper

Asset Pricing with Realistic Crises Dynamics

Author

Listed:
  • Goutham Gopalakrishna

    (Swiss Finance Institute (EPFL); Ecole Polytechnique Fédérale de Lausanne)

Abstract

What causes deep recessions and slow recovery? I revisit this question and develop a macro-finance asset pricing model that quantitatively matches the salient empirical features of financial crises such as a large drop in the output, a high risk premium, reduced financial intermediation, and a long duration of economic distress. The model features leveraged intermediaries who are subjected to both capital and productivity shocks, and face a regime-dependent exit rate. I show that the model without time varying intermediary productivity and exit, which reduces to Brunnermeier and Sannikov (2016), suffers from a tension between the amplification and the persistence of financial crises. In particular, there is a trade-off between the unconditional risk premium, the conditional risk premium, and the probability and duration of crisis. Features that generate high financial amplification also induce faster recovery, at odds with the data. I show that my model resolves this tension and generates realistic crises dynamics. The model is solved using a novel numerical method with active machine learning that is scalable and alleviates the curse of dimensionality.

Suggested Citation

  • Goutham Gopalakrishna, 2020. "Asset Pricing with Realistic Crises Dynamics," Swiss Finance Institute Research Paper Series 20-96, Swiss Finance Institute.
  • Handle: RePEc:chf:rpseri:rp2096
    as

    Download full text from publisher

    File URL: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3732232
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Financial Intermediation; Intermediary Asset Pricing; Machine Learning;
    All these keywords.

    JEL classification:

    • E44 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Financial Markets and the Macroeconomy
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:chf:rpseri:rp2096. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ridima Mittal (email available below). General contact details of provider: https://edirc.repec.org/data/fameech.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.