IDEAS home Printed from https://ideas.repec.org/p/cgd/wpaper/226.html
   My bibliography  Save this paper

Can Donors Be Flexible within Restrictive Budget Systems? Options for Innovative Financing Mechanisms - Working Paper 226

Author

Listed:
  • Benjamin Leo

Abstract

This paper focuses on how budgetary scorekeeping systems affect governments’ ability or willingness to support innovative development finance initiatives and explores several options to overcome the restrictions the systems often impose. As a starting point, it assumes that donor governments, such as the United States, will not reform their budgetary system regulations to accommodate innovative development finance commitments due to political and budget policy concerns. In general, each option outlined entails important financial, political, and bureaucratic challenges and tradeoffs. In other words, there are no silver bullets. However, there are possible approaches that may merit further exploration by donor governments that want to support specific innovative development finance initiatives but are constrained by existing budgetary systems.

Suggested Citation

  • Benjamin Leo, 2010. "Can Donors Be Flexible within Restrictive Budget Systems? Options for Innovative Financing Mechanisms - Working Paper 226," Working Papers 226, Center for Global Development.
  • Handle: RePEc:cgd:wpaper:226
    as

    Download full text from publisher

    File URL: http://www.cgdev.org/content/publications/detail/1424497/
    Download Restriction: no

    References listed on IDEAS

    as
    1. David M. Drukker & Richard Gates, 2006. "Generating Halton sequences using Mata," Stata Journal, StataCorp LP, vol. 6(2), pages 214-228, June.
    2. Geweke, John, 1989. "Bayesian Inference in Econometric Models Using Monte Carlo Integration," Econometrica, Econometric Society, vol. 57(6), pages 1317-1339, November.
    3. James J. Heckman, 1976. "The Common Structure of Statistical Models of Truncation, Sample Selection and Limited Dependent Variables and a Simple Estimator for Such Models," NBER Chapters,in: Annals of Economic and Social Measurement, Volume 5, number 4, pages 475-492 National Bureau of Economic Research, Inc.
    4. Keane, Michael P, 1994. "A Computationally Practical Simulation Estimator for Panel Data," Econometrica, Econometric Society, vol. 62(1), pages 95-116, January.
    5. Richard Chiburis & Michael Lokshin, 2007. "Maximum likelihood and two-step estimation of an ordered-probit selection model," Stata Journal, StataCorp LP, vol. 7(2), pages 167-182, June.
    6. Amemiya, Takeshi, 1973. "Regression Analysis when the Dependent Variable is Truncated Normal," Econometrica, Econometric Society, vol. 41(6), pages 997-1016, November.
    7. Heckman, James J, 1978. "Dummy Endogenous Variables in a Simultaneous Equation System," Econometrica, Econometric Society, vol. 46(4), pages 931-959, July.
    8. Smith, Richard J & Blundell, Richard W, 1986. "An Exogeneity Test for a Simultaneous Equation Tobit Model with an Application to Labor Supply," Econometrica, Econometric Society, vol. 54(3), pages 679-685, May.
    9. Richard Gates, 2006. "A Mata Geweke–Hajivassiliou–Keane multivariate normal simulator," Stata Journal, StataCorp LP, vol. 6(2), pages 190-213, June.
    10. Amemiya, Takeshi, 1974. "Multivariate Regression and Simultaneous Equation Models when the Dependent Variables Are Truncated Normal," Econometrica, Econometric Society, vol. 42(6), pages 999-1012, November.
    11. Sophia Rabe-Hesketh & Anders Skrondal & Andrew Pickles, 2002. "Reliable estimation of generalized linear mixed models using adaptive quadrature," Stata Journal, StataCorp LP, vol. 2(1), pages 1-21, February.
    12. Vassilis A. Hajivassiliou & Daniel L. McFadden, 1998. "The Method of Simulated Scores for the Estimation of LDV Models," Econometrica, Econometric Society, pages 863-896.
    13. Mark M. Pitt & Shahidur R. Khandker, 1998. "The Impact of Group-Based Credit Programs on Poor Households in Bangladesh: Does the Gender of Participants Matter?," Journal of Political Economy, University of Chicago Press, vol. 106(5), pages 958-996, October.
    14. Rivers, Douglas & Vuong, Quang H., 1988. "Limited information estimators and exogeneity tests for simultaneous probit models," Journal of Econometrics, Elsevier, vol. 39(3), pages 347-366, November.
    15. Bunch, David S., 1991. "Estimability in the Multinomial Probit Model," University of California Transportation Center, Working Papers qt1gf1t128, University of California Transportation Center.
    16. William H. Greene, 1998. "Gender Economics Courses in Liberal Arts Colleges: Further Results," The Journal of Economic Education, Taylor & Francis Journals, vol. 29(4), pages 291-300, January.
    17. Alfonso Miranda & Sophia Rabe-Hesketh, 2005. "Maximum Likelihood Estimation of Endogenous Switching And Sample Selection Models for Binary, Count, And Ordinal Variables," Keele Economics Research Papers KERP 2005/14, Centre for Economic Research, Keele University.
    18. Bolduc, Denis, 1999. "A practical technique to estimate multinomial probit models in transportation," Transportation Research Part B: Methodological, Elsevier, vol. 33(1), pages 63-79, February.
    19. Pagan, Adrian, 1979. "Some consequences of viewing LIML as an iterated Aitken estimator," Economics Letters, Elsevier, vol. 3(4), pages 369-372.
    20. Keane, Michael P, 1992. "A Note on Identification in the Multinomial Probit Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(2), pages 193-200, April.
    21. Wilde, Joachim, 2000. "Identification of multiple equation probit models with endogenous dummy regressors," Economics Letters, Elsevier, vol. 69(3), pages 309-312, December.
    22. Michael Lokshin & Roger B. Newson, 2011. "Impact of interventions on discrete outcomes: Maximum likelihood estimation of the binary choice models with binary endogenous regressors," Stata Journal, StataCorp LP, vol. 11(3), pages 368-385, September.
    23. Lorenzo Cappellari & Stephen P. Jenkins, 2003. "Multivariate probit regression using simulated maximum likelihood," Stata Journal, StataCorp LP, pages 278-294.
    24. William J. Burke, 2009. "Fitting and interpreting Cragg's tobit alternative using Stata," Stata Journal, StataCorp LP, vol. 9(4), pages 584-592, December.
    25. G. S. Maddala & Lung-Fei Lee, 1976. "Recursive Models with Qualitative Endogenous Variables," NBER Chapters,in: Annals of Economic and Social Measurement, Volume 5, number 4, pages 525-545 National Bureau of Economic Research, Inc.
    26. Bunch, David S., 1991. "Estimability in the multinomial probit model," Transportation Research Part B: Methodological, Elsevier, vol. 25(1), pages 1-12, February.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Aid Effectiveness;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cgd:wpaper:226. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Publications Manager). General contact details of provider: http://edirc.repec.org/data/cgdevus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.