IDEAS home Printed from https://ideas.repec.org/p/cfi/fseres/cf561.html
   My bibliography  Save this paper

Multi-Agent Model Based Proactive Risk Management For Equity Investment (Forthcoming in "Engineering Applications of Artificial Intelligence")

Author

Listed:
  • Daiya Mita

    (Nomura Asset Management Co, ltd.,)

  • Akihiko Takahashi

    (Graduate School of Economics, The University of Tokyo)

Abstract

Developing and applying new artificial intelligence (AI) techniques in finance has become popular and one of the growing areas. Although many studies focus on return prediction and do not pay much attention to price formation, revealing its mechanism is essential in risk management, particularly in proactive risk management for investment to improve the performance. Thus, this paper introduces a novel multi-agent model, which is able to explain how agents’ portfolio rebalances determine the market price dynamics to clarify the price formation by applying a state space model. The technical novelty is the effective integration of state space modeling and fuzzy logic into a multi-agent model with four types of typical investors and their fuzzy trading strategies. By using the estimated unobservable fund flows of each trader in the model, this work proposes a new proactive warning signal. As a result, the signal improves both the risk and return of the investment in the Japanese and United States equity markets. Our findings indicate that the agents’ estimated fund flows driving asset prices help us to avoid a market crash, reduce the risk and improve the return in investment practice.

Suggested Citation

  • Daiya Mita & Akihiko Takahashi, 2023. "Multi-Agent Model Based Proactive Risk Management For Equity Investment (Forthcoming in "Engineering Applications of Artificial Intelligence")," CARF F-Series CARF-F-561, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
  • Handle: RePEc:cfi:fseres:cf561
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cfi:fseres:cf561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/catokjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.