IDEAS home Printed from https://ideas.repec.org/p/cen/wpaper/26-06.html

Non-Random Assignment of Individual Identifiers and Selection into Linked Data: Implications for Research

Author

Listed:
  • Kyle Raze
  • Nicole Perales
  • Liana Christin Landivar

Abstract

The U.S. Census Bureau’s Person Identification Validation System facilitates anonymous linkages between survey and administrative records by assigning Protected Identification Keys (PIKs) to person records. While PIK assignment is generally accurate, some person records are not successfully assigned a PIK, which can lead to sample selection bias in analyses of linked data. Using the American Community Survey (ACS) and the Current Population Survey Annual Social and Economic Supplement (CPS ASEC) between 2005 and 2022, we corroborate and extend existing findings on the drivers of PIK assignment, showing that the rate of PIK assignment varies widely across socio-demographic subgroups. Using earnings as a test case, we then show that limiting a survey sample of wage earners to person records with PIKs or successful linkages to W-2 wage records tends to overestimate self-reported wage earnings, on average, indicative of linkage-induced selection bias. In a validation exercise, we demonstrate that reweighting methods, such as inverse probability weighting or entropy balancing, can mitigate this bias.

Suggested Citation

  • Kyle Raze & Nicole Perales & Liana Christin Landivar, 2026. "Non-Random Assignment of Individual Identifiers and Selection into Linked Data: Implications for Research," Working Papers 26-06, Center for Economic Studies, U.S. Census Bureau.
  • Handle: RePEc:cen:wpaper:26-06
    as

    Download full text from publisher

    File URL: https://www2.census.gov/library/working-papers/2026/adrm/ces/CES-WP-26-06.pdf
    File Function: First version, 2026
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
    • C83 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Survey Methods; Sampling Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cen:wpaper:26-06. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dawn Anderson (email available below). General contact details of provider: https://edirc.repec.org/data/cesgvus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.