IDEAS home Printed from https://ideas.repec.org/p/cem/doctra/853.html
   My bibliography  Save this paper

From Euclidean Distance to Spatial Classification: Unraveling the Technology behind GPT Models

Author

Listed:
  • Alfredo B. Roisenzvit

Abstract

In this paper, we present a comprehensive analysis of the technology underpinning Generative Pre-trained Transformer (GPT) models, with a particular emphasis on the interrelationships between Euclidean distance, spatial classification, and the functioning of GPT models. Our investigation begins with a thorough examination of Euclidean distance, elucidating its role as a fundamental metric for quantifying the proximity between points in a multi-dimensional space. Following this, we provide an overview of spatial classification techniques, explicating their utility in discerning patterns and relationships within complex data structures. With this foundation, we delve into the inner workings of GPT models, outlining their architectural components, such as the self-attention mechanism and positional encoding. We then explore the process of training GPT models, detailing the significance of tokenization and embeddings. Additionally, we scrutinize the role of Euclidean distance and spatial classification in enabling GPT models to effectively process input sequences and generate coherent output in a wide array of natural language processing tasks. Ultimately, this paper aims to provide a comprehensive understanding of the intricate connections between Euclidean distance, spatial classification, and GPT models, fostering a deeper appreciation of their collective impact on the advancements in artificial intelligence and natural language processing.

Suggested Citation

  • Alfredo B. Roisenzvit, 2023. "From Euclidean Distance to Spatial Classification: Unraveling the Technology behind GPT Models," CEMA Working Papers: Serie Documentos de Trabajo. 853, Universidad del CEMA.
  • Handle: RePEc:cem:doctra:853
    as

    Download full text from publisher

    File URL: https://ucema.edu.ar/publicaciones/download/documentos/853.pdf
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cem:doctra:853. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Valeria Dowding (email available below). General contact details of provider: https://edirc.repec.org/data/cemaaar.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.