IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt77m0v72x.html
   My bibliography  Save this paper

Spatial Scenarios for Market Penetration of Plug-in Battery Electric Trucks in the U.S

Author

Listed:
  • Miller, Marshall
  • Wang, Qian
  • Fulton, Lewis

Abstract

Carbon emissions targets require large reductions in greenhouse gases (GHGs) in the near-to mid-term, and the transportation sector is a major emitter of GHGs. To understand potential pathways to GHG reductions, this project developed the U.S. Transportation Transitions Model (US TTM) to study various scenarios of zero-emission vehicle (ZEV) market penetration in the U.S. The model includes vehicle fuel economy, vehicle stock and sales, fuel carbon intensities, and costs for vehicles and fuels all projected through 2050. Market penetration scenarios through 2050 are input as percentages of sales for all vehicle types and technologies. Three scenarios were developed for the U.S.: a business as usual (BAU), low carbon (LC), and High ZEV scenario. The LC and High ZEV include rapid penetration of ZEVs into the vehicle market. The introduction of ZEVs requires fueling infrastructure to support the vehicles. Initial deployments of ZEVs are expected to be dominated by battery electric vehicles. To estimate the number and cost of charging stations for battery electric trucks in the mid-term, outputs were used from a California Energy Commission (CEC) study projecting the need for chargers in California. The study used the HEVI-Pro model to estimate electrical energy needs and number of chargers for the truck stock in several California cities. The CEC study outputs were used along with the TTM model outputs from this study to estimate charger needs and costs for six U.S. cities outside California. The LC and High ZEV scenarios reduced carbon emissions by 92% and 94% in the U.S. by 2050, respectively. Due to slow stock turnover, the LC and High ZEV scenarios contain significant numbers of ICE trucks. The biomass-based liquid volume reaches 70 (High ZEV) to 80 (LC) billion GGE by 2045. For the cities in this study, the charger cost ranges from $5 million to $2.6 billion in 2030 and from roughly $1 billion to almost $30 billion in 2040. View the NCST Project Webpage

Suggested Citation

  • Miller, Marshall & Wang, Qian & Fulton, Lewis, 2022. "Spatial Scenarios for Market Penetration of Plug-in Battery Electric Trucks in the U.S," Institute of Transportation Studies, Working Paper Series qt77m0v72x, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt77m0v72x
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/77m0v72x.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Engineering; Electric trucks; Electric vehicle charging; Forecasting; Market penetration; Spatial analysis;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt77m0v72x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.