IDEAS home Printed from https://ideas.repec.org/p/cdl/agrebk/qt8ph3x0jr.html

Global evidence for ultraviolet radiation decreasing COVID-19 growth rates

Author

Listed:
  • Carleton, Tamma
  • Cornetet, Jules
  • Huybers, Peter
  • Meng, Kyle C
  • Proctor, Jonathan

Abstract

With nearly every country combating the 2019 novel coronavirus (COVID-19), there is a need to understand how local environmental conditions may modify transmission. To date, quantifying seasonality of the disease has been limited by scarce data and the difficulty of isolating climatological variables from other drivers of transmission in observational studies. We combine a spatially resolved dataset of confirmed COVID-19 cases, composed of 3,235 regions across 173 countries, with local environmental conditions and a statistical approach developed to quantify causal effects of environmental conditions in observational data settings. We find that ultraviolet (UV) radiation has a statistically significant effect on daily COVID-19 growth rates: a SD increase in UV lowers the daily growth rate of COVID-19 cases by ∼1 percentage point over the subsequent 2.5 wk, relative to an average in-sample growth rate of 13.2%. The time pattern of lagged effects peaks 9 to 11 d after UV exposure, consistent with the combined timescale of incubation, testing, and reporting. Cumulative effects of temperature and humidity are not statistically significant. Simulations illustrate how seasonal changes in UV have influenced regional patterns of COVID-19 growth rates from January to June, indicating that UV has a substantially smaller effect on the spread of the disease than social distancing policies. Furthermore, total COVID-19 seasonality has indeterminate sign for most regions during this period due to uncertain effects of other environmental variables. Our findings indicate UV exposure influences COVID-19 cases, but a comprehensive understanding of seasonality awaits further analysis.

Suggested Citation

  • Carleton, Tamma & Cornetet, Jules & Huybers, Peter & Meng, Kyle C & Proctor, Jonathan, 2021. "Global evidence for ultraviolet radiation decreasing COVID-19 growth rates," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt8ph3x0jr, Department of Agricultural & Resource Economics, UC Berkeley.
  • Handle: RePEc:cdl:agrebk:qt8ph3x0jr
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/8ph3x0jr.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:agrebk:qt8ph3x0jr. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/dabrkus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.