IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Splines models for prediction of house prices

Listed author(s):
  • David Boniface

    (Epidemiology and Public Health, University College London)

Registered author(s):

    Aim: To create a web-based facility for customers to enter an address of a house and obtain a graph showing the trend of price of house since last sold, extrapolated to current date, within milliseconds. Method: The UK Land Registry of house sale prices was used to estimate mean price trends from 2000 to 2010 for each category of house. The Stata ado-file uvrs (with user-specified knots) was used to model the curve. The parameter estimates were saved. Later, to respond in real time to a query about a particular house, splinegen was used to generate the spline curve for the appropriate time period, which was adjusted to apply to the particular house and plotted on the webpage. Challenges: use of coded date, choice of user knots for splines, saving and retrieving the knots and parameter estimates, use of log scale for prices to deal with skewed price distribution, estimation of prediction intervals, and the 2009 slump in house prices

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    File Function: presentation slides
    Download Restriction: no

    Paper provided by Stata Users Group in its series United Kingdom Stata Users' Group Meetings 2011 with number 09.

    in new window

    Date of creation: 26 Sep 2011
    Handle: RePEc:boc:usug11:09
    Contact details of provider: Web page:

    More information through EDIRC

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:boc:usug11:09. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.