IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Sample size and power estimation when covariates are measured with error

Listed author(s):
  • Michael Wallace

    (London School of Hygiene and Tropical Medicine)

Registered author(s):

    Measurement error in exposure variables can lead to bias in effect estimates, and methods that aim to correct this bias often come at the price of greater standard errors (and so, lower statistical power). This means that standard sample size calculations are inadequate and that, in general, simulation studies are required. Our routine autopower aims to take the legwork out of this simulation process, restricting attention to univariate logistic regression where exposures are subject to classical measurement error. It can be used to estimate the power of a particular model setup or to search for a suitable sample size for a desired power. The measurement error correction methods that are employed are regression calibration (rcal) and a conditional score method--a Stata routine that we also introduce.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    File Function: presentation slides
    Download Restriction: no

    Paper provided by Stata Users Group in its series United Kingdom Stata Users' Group Meetings 2011 with number 08.

    in new window

    Date of creation: 26 Sep 2011
    Handle: RePEc:boc:usug11:08
    Contact details of provider: Web page:

    More information through EDIRC

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:boc:usug11:08. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.