IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Diagnostics for generalised linear mixed models

Listed author(s):
  • Sophia Rabe-Hesketh

    ()

    (King's College London)

  • Anders Skrondal

    (Norwegian Institute of Public Health)

Generalized linear mixed models are generalized linear models that include random effects varying between clusters or 'higher-level' units of hierarchically structured data. Such models can be estimated using gllamm. The prediction command gllapred can be used to obtain empirical Bayes predictions of the random effects, interpretable as higher-level residuals. Combined with approximate sampling standard deviations, these residuals can be used for identifying unusual higher-level units. However, since the distribution of these predictions is generally not known, we recommend simulating responses from the model using gllasim and comparing 'observed' and simulated residuals. We also discuss different types of level 1 residuals and influence diagnostics.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://fmwww.bc.edu/repec/usug2003/diag.pdf
Download Restriction: no

Paper provided by Stata Users Group in its series United Kingdom Stata Users' Group Meetings 2003 with number 05.

as
in new window

Length:
Date of creation: 16 Mar 2003
Handle: RePEc:boc:usug03:05
Contact details of provider: Web page: http://www.stata.com/meeting/9uk

More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:boc:usug03:05. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.