IDEAS home Printed from
   My bibliography  Save this paper

Semiparametric generalized linear models


  • Paul Rathouz

    () (Department of Health Studies, University of Chicago)


I propose a new class of generalized linear models. As with the existing models, these new models are specified via a linear predictor and a link function for the mean of response Y as a function of predictors X. However, here, the “baseline” distribution of Y when the linear predictor is zero is left unspecified and is estimated from the data. The response distribution when the linear predictor differs from zero is then generated via exponential tilting of the baseline distribution, yielding a response model that is a member of the natural exponential family, with corresponding canonical link and variance functions. The resulting model has a similar level of flexibility as the proportional odds model. Maximum likelihood estimators are developed for response distribution with finite support, and the new model is studied and illustrated through simulations and example analyses from aging and psychiatry research.

Suggested Citation

  • Paul Rathouz, 2008. "Semiparametric generalized linear models," Summer North American Stata Users' Group Meetings 2008 15, Stata Users Group, revised 28 Aug 2008.
  • Handle: RePEc:boc:nsug08:15

    Download full text from publisher

    File URL:
    Download Restriction: no

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boc:nsug08:15. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.