IDEAS home Printed from
   My bibliography  Save this paper

Correctly Modelling CD4 Cell Count in Cox Regression Analysis of HIV Positive Patients


  • Allison Dunning

    () (Weill Cornell Medical College)

  • Sean Collins
  • Dan Fitzgerald
  • Sandra H. Rua


Previous trial has shown that starting ART therapy earlier (‘Early’) rather than waiting for onset of symptoms (‘Standard’) in HIV patients significantly decreases mortality. As a follow-up, researchers are interested in determining if ‘Early’ therapy significantly decreases time to first Tuberculosis (TFTB) diagnosis, when adjusting for CD4 cell count, a known strong predictor. STATA 12.0 was used to perform two cox regression models to analyze the effect of ART start time on TFTB. The first model included baseline CD4 cell count only as a predictor while the second model treated CD4 cell count as a time-varying predictor. Regular cox regression analysis showed that ‘Early’ therapy results in a significant decrease in TFTB, after adjustment for previous TB diagnosis, baseline BMI, and baseline CD4 cell count. Treating CD4 cell count as time-varying predictor in Cox regression, however, we determine that ART start time was not a significant predictor of TFTB. Failing to adjust for the change in CD4 cell counts over time led to reporting that ‘Early’ therapy significantly reduces risk of TB diagnosis. Modeled correctly, the effect becomes non-significant. This result has substantial consequence on treatment decision making.

Suggested Citation

  • Allison Dunning & Sean Collins & Dan Fitzgerald & Sandra H. Rua, 2013. "Correctly Modelling CD4 Cell Count in Cox Regression Analysis of HIV Positive Patients," 2013 Stata Conference 16, Stata Users Group.
  • Handle: RePEc:boc:norl13:16

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Aaberge, Rolf & Dagsvik, John K & Strom, Steinar, 1995. " Labor Supply Responses and Welfare Effects of Tax Reforms," Scandinavian Journal of Economics, Wiley Blackwell, vol. 97(4), pages 635-659, December.
    2. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, December.
    3. Arne Risa Hole, 2007. "Fitting mixed logit models by using maximum simulated likelihood," Stata Journal, StataCorp LP, vol. 7(3), pages 388-401, September.
    4. Peter Haan & Arne Uhlendorff, 2006. "Estimation of multinomial logit models with unobserved heterogeneity using maximum simulated likelihood," Stata Journal, StataCorp LP, vol. 6(2), pages 229-245, June.
    5. Hoynes, Hilary Williamson, 1996. "Welfare Transfers in Two-Parent Families: Labor Supply and Welfare Participation under AFDC-UP," Econometrica, Econometric Society, vol. 64(2), pages 295-332, March.
    6. Arthur van Soest, 1995. "Structural Models of Family Labor Supply: A Discrete Choice Approach," Journal of Human Resources, University of Wisconsin Press, vol. 30(1), pages 63-88.
    7. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boc:norl13:16. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.