IDEAS home Printed from https://ideas.repec.org/p/boc/lsug25/11.html
   My bibliography  Save this paper

Poisson-based expectile regression for nonnegative data with a mass point at zero

Author

Listed:
  • Jeffrey H. Bergstrand

    (University of Notre Dame)

  • Matthew W. Clance

    (University of Pretoria)

  • Joao Santos Silva

    (University of Surrey)

Abstract

In many applications, the outcome of interest is nonnegative and has a mixed distribution with a long right-tail and a mass point at zero. Applications using this sort of data are typical in health and international economics but are also found in many other areas. The lower bound at zero implies that models for this kind of data are generally heteroskedastic, implying that the regressors will have different effects on different regions of the conditional distribution. The traditional way to learn about heterogeneous effects in conditional distributions is to use quantile regression. However, the conditional quantiles of outcomes of this kind cannot be given by smooth functions of the regressors because the mass point implies that some quantiles will be identically zero for certain values of the regressors. This complicates the estimation of quantile regressions for data of this kind and the interpretation of the estimated parameters. As an alternative, we can estimate Poisson-based expectile regressions using Efron’s (1992) asymmetric maximum- likelihood approach. After highlighting the problems that akict estimation of quantile regressions for this kind of data, we brieXy introduce expectile regression as introduced by Newey and Powell (1987) and show how they can be estimated with nonnegative data using Efron’s (1992) approach. We then introduce the appmlhdfe command and illustrate its use.

Suggested Citation

  • Jeffrey H. Bergstrand & Matthew W. Clance & Joao Santos Silva, 2025. "Poisson-based expectile regression for nonnegative data with a mass point at zero," UK Stata Conference 2025 11, Stata Users Group.
  • Handle: RePEc:boc:lsug25:11
    as

    Download full text from publisher

    File URL: http://repec.org/lsug2025/UK25_Santos_Silva.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lee, Myoung-Jae, 1995. "Semi-parametric Estimation of Simultaneous Equations with Limited Dependent Variables: A Case Study of Female Labour Supply," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(2), pages 187-200, April-Jun.
    2. Bergstrand, Jeffrey H. & Clance, Matthew W. & Santos Silva, J.M.C., 2025. "The tails of gravity: Using expectiles to quantify the trade-margins effects of economic integration agreements," Journal of International Economics, Elsevier, vol. 157(C).
    3. Newey, Whitney K & Powell, James L, 1987. "Asymmetric Least Squares Estimation and Testing," Econometrica, Econometric Society, vol. 55(4), pages 819-847, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Tao & Tripathi, Gautam, 2017. "A simple consistent test of conditional symmetry in symmetrically trimmed tobit models," Journal of Econometrics, Elsevier, vol. 198(1), pages 29-40.
    2. Akosah, Nana Kwame & Alagidede, Imhotep Paul & Schaling, Eric, 2020. "Testing for asymmetry in monetary policy rule for small-open developing economies: Multiscale Bayesian quantile evidence from Ghana," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    3. Taoufik Bouezmarni & Mohamed Doukali & Abderrahim Taamouti, 2024. "Testing Granger non-causality in expectiles," Econometric Reviews, Taylor & Francis Journals, vol. 43(1), pages 30-51, January.
    4. Alois Pichler, 2024. "Higher order measures of risk and stochastic dominance," Papers 2402.15387, arXiv.org.
    5. Chen, Yu & Ma, Mengyuan & Sun, Hongfang, 2023. "Statistical inference for extreme extremile in heavy-tailed heteroscedastic regression model," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 142-162.
    6. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
    7. Claudia Pacella, 2020. "Essays on Forecasting," ULB Institutional Repository 2013/307579, ULB -- Universite Libre de Bruxelles.
    8. Leandro M. Magnusson, 2010. "Inference in limited dependent variable models robust to weak identification," Econometrics Journal, Royal Economic Society, vol. 13(3), pages 56-79, October.
    9. H. Kaibuchi & Y. Kawasaki & G. Stupfler, 2022. "GARCH-UGH: a bias-reduced approach for dynamic extreme Value-at-Risk estimation in financial time series," Quantitative Finance, Taylor & Francis Journals, vol. 22(7), pages 1277-1294, July.
    10. repec:hum:wpaper:sfb649dp2017-027 is not listed on IDEAS
    11. Said Khalil, 2022. "Expectile-based capital allocation," Working Papers hal-03816525, HAL.
    12. Litimein, Ouahiba & Laksaci, Ali & Mechab, Boubaker & Bouzebda, Salim, 2023. "Local linear estimate of the functional expectile regression," Statistics & Probability Letters, Elsevier, vol. 192(C).
    13. Daiji Kawaguchi & Yukitoshi Matsushita & Hisahiro Naito, 2017. "Moment Estimation of the Probit Model with an Endogenous Continuous Regressor," The Japanese Economic Review, Springer, vol. 68(1), pages 48-62, March.
    14. Dragana Ostic & Ummar Faruk Saeed & Angelina Kissiwaa Twum & Rahmatu Chibsah, 2025. "Transition Toward a Sustainable Circular Economy: A Perspective on Green Innovation and Governance Policy Using a Novel MMQR Approach," Sustainable Development, John Wiley & Sons, Ltd., vol. 33(4), pages 5719-5741, August.
    15. Parente, Paulo M.D.C. & Smith, Richard J., 2011. "Gel Methods For Nonsmooth Moment Indicators," Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.
    16. Bastianin, Andrea & Galeotti, Marzio & Manera, Matteo, 2014. "Causality and predictability in distribution: The ethanol–food price relation revisited," Energy Economics, Elsevier, vol. 42(C), pages 152-160.
    17. Dingshi Tian & Zongwu Cai & Ying Fang, 2018. "Econometric Modeling of Risk Measures: A Selective Review of the Recent Literature," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201807, University of Kansas, Department of Economics, revised Oct 2018.
    18. Machado, Jose A. F. & Silva, J. M. C. Santos, 2000. "Glejser's test revisited," Journal of Econometrics, Elsevier, vol. 97(1), pages 189-202, July.
    19. Akosah, Nana & Alagidede, Imhotep & Schaling, Eric, 2019. "Unfolding the monetary policy rule in Ghana: quantile-based evidence within time-frequency framework," MPRA Paper 103260, University Library of Munich, Germany, revised 01 Oct 2020.
    20. Qinyu Wu & Fan Yang & Ping Zhang, 2023. "Conditional generalized quantiles based on expected utility model and equivalent characterization of properties," Papers 2301.12420, arXiv.org.
    21. Moshe Buchinsky, 1998. "Recent Advances in Quantile Regression Models: A Practical Guideline for Empirical Research," Journal of Human Resources, University of Wisconsin Press, vol. 33(1), pages 88-126.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boc:lsug25:11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F Baum (email available below). General contact details of provider: https://edirc.repec.org/data/stataea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.