IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Meta-analytic depiction of ordered categorical diagnostic test accuracy in ROC space

Listed author(s):
  • Ben Adarkwa Dwamena


    (University of Michigan/VA Ann Arbor Health Systems)

Meta-analysis of diagnostic accuracy studies may be performed to provide a summary measure of diagnostic accuracy based on a collection of studies and their reported empirical or estimated smooth ROC curves. Statistical methodology for meta-analysis of diagnostic accuracy studies has largely been focused on the most common type of studies—those reporting estimates of test sensitivity and specificity. To meta-analyze studies with results in more than two categories, one approach is to dichotomize results by grouping them into two categories and then employing one of such methods. However, it is more efficient to take all thresholds into account. Existing methods require the same number and set of categories/thresholds, are computationally intensive adapations of the binary methods or are only implementable using bayesian inference. This talk presents a robust and flexible parametric algorithm which is invariant to the number/set of categories and implementable with standard statistical software such as Stata, SPSS or SAS. The method consists of (1) estimation of study-specific ROC and location-scale parameters by heteroscedastic ordinal(probit or logit) regression; (2) Esimation of correlated or uncorrelated mean location and scale from study-specific estimates using linear mixed modeling by ML, REML or method of moments; and (3) Estimation of Summary ROC (bilogistic versus binormal) and ROC functionals using mean location and scale estimates from (2). The method is illustrated with two data sets (one with studies reporting same set of categories and the other with disparately categorized outcomes). Steps 1 and 2 are performed with oglm(authored by David Williams) and mvmeta (authored by Ian White) respectively. The proposed meta-analytical algorithm may be implemented in Stata using the midacat module.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by Stata Users Group in its series DC09 Stata Conference with number 3.

in new window

Date of creation: 11 Aug 2009
Handle: RePEc:boc:dcon09:3
Contact details of provider: Web page:

More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:boc:dcon09:3. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.