IDEAS home Printed from https://ideas.repec.org/p/boc/bocoec/1001.html
   My bibliography  Save this paper

Kotlarski with a Factor Loading

Author

Listed:
  • Arthur Lewbel

    (Boston College)

Abstract

This note extends the Kotlarski (1967) Lemma to show exactly what is identified when we allow for an unknown factor loading on the common unobserved factor. Potential applications include measurement error models and panel data factor models.

Suggested Citation

  • Arthur Lewbel, 2020. "Kotlarski with a Factor Loading," Boston College Working Papers in Economics 1001, Boston College Department of Economics, revised 15 Dec 2020.
  • Handle: RePEc:boc:bocoec:1001
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/EC-P/wp1001.pdf
    File Function: main text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Salvador Navarro & Jin Zhou, 2017. "Identifying Agent's Information Sets: an Application to a Lifecycle Model of Schooling, Consumption, and Labor Supply," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 25, pages 58-92, April.
    2. Flavio Cunha & James J. Heckman & Susanne M. Schennach, 2010. "Estimating the Technology of Cognitive and Noncognitive Skill Formation," Econometrica, Econometric Society, vol. 78(3), pages 883-931, May.
    3. Stéphane Bonhomme & Jean-Marc Robin, 2010. "Generalized Non-Parametric Deconvolution with an Application to Earnings Dynamics," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 77(2), pages 491-533.
    4. Evdokimov, Kirill & White, Halbert, 2012. "Some Extensions Of A Lemma Of Kotlarski," Econometric Theory, Cambridge University Press, vol. 28(4), pages 925-932, August.
    5. Li, Tong & Vuong, Quang, 1998. "Nonparametric Estimation of the Measurement Error Model Using Multiple Indicators," Journal of Multivariate Analysis, Elsevier, vol. 65(2), pages 139-165, May.
    6. Jane Cooley Fruehwirth & Salvador Navarro & Yuya Takahashi, 2016. "How the Timing of Grade Retention Affects Outcomes: Identification and Estimation of Time-Varying Treatment Effects," Journal of Labor Economics, University of Chicago Press, vol. 34(4), pages 979-1021.
    7. S. M. Schennach & Yingyao Hu, 2013. "Nonparametric Identification and Semiparametric Estimation of Classical Measurement Error Models Without Side Information," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 177-186, March.
    8. Arthur Lewbel, 1997. "Constructing Instruments for Regressions with Measurement Error when no Additional Data are Available, with an Application to Patents and R&D," Econometrica, Econometric Society, vol. 65(5), pages 1201-1214, September.
    9. Erickson, Timothy & Whited, Toni M., 2002. "Two-Step Gmm Estimation Of The Errors-In-Variables Model Using High-Order Moments," Econometric Theory, Cambridge University Press, vol. 18(3), pages 776-799, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Battistin, Erich & Lamarche, Carlos & Rettore, Enrico, 2020. "Quantiles of the Gain Distribution of an Early Child Intervention," CEPR Discussion Papers 14721, C.E.P.R. Discussion Papers.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ben-Moshe, Dan, 2018. "Identification Of Joint Distributions In Dependent Factor Models," Econometric Theory, Cambridge University Press, vol. 34(1), pages 134-165, February.
    2. Andrei Zeleneev & Kirill Evdokimov, 2023. "Simple estimation of semiparametric models with measurement errors," CeMMAP working papers 10/23, Institute for Fiscal Studies.
    3. Kirill S. Evdokimov & Andrei Zeleneev, 2023. "Simple Estimation of Semiparametric Models with Measurement Errors," Papers 2306.14311, arXiv.org, revised Mar 2024.
    4. Hu, Yingyao & Schennach, Susanne & Shiu, Ji-Liang, 2022. "Identification of nonparametric monotonic regression models with continuous nonclassical measurement errors," Journal of Econometrics, Elsevier, vol. 226(2), pages 269-294.
    5. Irene Botosaru, 2017. "Identifying Distributions in a Panel Model with Heteroskedasticity: An Application to Earnings Volatility," Discussion Papers dp17-11, Department of Economics, Simon Fraser University.
    6. Susanne M. Schennach, 2012. "Measurement error in nonlinear models - a review," CeMMAP working papers 41/12, Institute for Fiscal Studies.
    7. Bonhomme, Stphane & Robin, Jean-Marc, 2009. "Consistent noisy independent component analysis," Journal of Econometrics, Elsevier, vol. 149(1), pages 12-25, April.
    8. Shakeeb Khan & Arnaud Maurel & Yichong Zhang, 2023. "Informational Content of Factor Structures in Simultaneous Binary Response Models," Advances in Econometrics, in: Essays in Honor of Joon Y. Park: Econometric Methodology in Empirical Applications, volume 45, pages 385-410, Emerald Group Publishing Limited.
    9. Dong, Hao & Otsu, Taisuke & Taylor, Luke, 2022. "Estimation of varying coefficient models with measurement error," Journal of Econometrics, Elsevier, vol. 230(2), pages 388-415.
    10. Lance Lochner & Youngki Shin, 2014. "Understanding Earnings Dynamics: Identifying and Estimating the Changing Roles of Unobserved Ability, Permanent and Transitory Shocks," NBER Working Papers 20068, National Bureau of Economic Research, Inc.
    11. Kengo Kato & Yuya Sasaki & Takuya Ura, 2018. "Inference based on Kotlarski's Identity," Papers 1808.09375, arXiv.org, revised Sep 2019.
    12. Erickson, Timothy & Jiang, Colin Huan & Whited, Toni M., 2014. "Minimum distance estimation of the errors-in-variables model using linear cumulant equations," Journal of Econometrics, Elsevier, vol. 183(2), pages 211-221.
    13. Daniel Wilhelm, 2018. "Testing for the presence of measurement error," CeMMAP working papers CWP45/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    14. Ben-Moshe, Dan & D’Haultfœuille, Xavier & Lewbel, Arthur, 2017. "Identification of additive and polynomial models of mismeasured regressors without instruments," Journal of Econometrics, Elsevier, vol. 200(2), pages 207-222.
    15. Botosaru, Irene & Sasaki, Yuya, 2018. "Nonparametric heteroskedasticity in persistent panel processes: An application to earnings dynamics," Journal of Econometrics, Elsevier, vol. 203(2), pages 283-296.
    16. Hao Dong & Yuya Sasaki, 2022. "Estimation of average derivatives of latent regressors: with an application to inference on buffer-stock saving," Departmental Working Papers 2204, Southern Methodist University, Department of Economics.
    17. Hu, Yingyao, 2017. "The econometrics of unobservables: Applications of measurement error models in empirical industrial organization and labor economics," Journal of Econometrics, Elsevier, vol. 200(2), pages 154-168.
    18. Pierre‐André Chiappori & Ju Hyun Kim, 2017. "A note on identifying heterogeneous sharing rules," Quantitative Economics, Econometric Society, vol. 8(1), pages 201-218, March.
    19. Kurisu, Daisuke & Otsu, Taisuke, 2022. "On the uniform convergence of deconvolution estimators from repeated measurements," LSE Research Online Documents on Economics 107533, London School of Economics and Political Science, LSE Library.
    20. Christian Gourieroux & Joann Jasiak, 2023. "Dynamic deconvolution and identification of independent autoregressive sources," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(2), pages 151-180, March.

    More about this item

    Keywords

    unobserved factor; factor loading;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boc:bocoec:1001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F Baum (email available below). General contact details of provider: https://edirc.repec.org/data/debocus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.