IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Matching methods for estimating treatment effects using Stata

  • Guido W. Imbens


    (Harvard University)

I will give a brief overview of modern statistical methods for estimating treatment effects that have recently become popular in social and biomedical sciences. These methods are based on the potential outcome framework developed by Donald Rubin. The specific methods discussed include regression methods, matching, and methods involving the propensity score. I will discuss the assumptions underlying these methods and the methods for assessing their plausability. I will then discuss using the Stata command nnmatch to estimate average treatment effects. I will illustrate this approach by using data from a job training program. A general survey of these methods can be found in Imbens, G. 2004. Nonparametric estimation of average treatment effects under exogeneity: A review. Review of Economics and Statistics 86: 4–30.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: link to full text
Download Restriction: Access to full text is restricted to subscribers.

File URL:
Download Restriction: no

File URL:
Download Restriction: no

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Paper provided by Stata Users Group in its series North American Stata Users' Group Meetings 2006 with number 13.

in new window

Date of creation: 23 Jul 2006
Date of revision:
Handle: RePEc:boc:asug06:13
Contact details of provider: Web page:

More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:boc:asug06:13. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.