IDEAS home Printed from https://ideas.repec.org/p/boc/asug03/06.html
   My bibliography  Save this paper

Generalized latent class modeling using gllamm

Author

Listed:
  • Sophia Rabe-Hesketh

    () (Institute of Psychiatry)

  • Andrew Pickles

    (University of Manchester)

  • Anders Skrondal

    (Norwegian Institute of Public Health)

Abstract

gllamm can estimate both conventional and unconventional latent class models. Models are specified using discrete latent variables whose values determine the conditional response distributions for the classes. A new feature of gllamm is that latent class probabilities can depend on covariates. We will first discuss the conventional exploratory latent class model. When a number of fallible diagnoses of some disease are available, this model can be used to estimate the prevalence of the disease as well as the sensitivities and specificities of the tests in the absence of a gold standard. After estimating the model in gllamm, gllapred can be used to diagnose individual subjects based on their posterior class probabilities. An advantage of using gllamm is that a wide range of response types can be accommodated. To illustrate this, we consider the analysis of rankings of political goals in the study of value orientations. We will also discuss confirmatory models such as latent class factor models and apply them to attitudes to abortion data, taking the survey design into account by using probability weighting and robust standard errors. Finally, we consider latent trajectory models for investigating distinct patterns of change in longitudinal data.

Suggested Citation

  • Sophia Rabe-Hesketh & Andrew Pickles & Anders Skrondal, 2002. "Generalized latent class modeling using gllamm," North American Stata Users' Group Meetings 2003 06, Stata Users Group.
  • Handle: RePEc:boc:asug03:06
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/repec/nasug2003/lclass.pdf
    Download Restriction: no

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boc:asug03:06. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F Baum). General contact details of provider: http://edirc.repec.org/data/stataea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.