IDEAS home Printed from https://ideas.repec.org/p/bgu/wpaper/0912.html

Using Ols To Test For Normality

Author

Listed:
  • Haim Shalit

    (Department of Economics, Ben-Gurion University of the Negev)

Abstract

Yitzhaki (1996) showed that the OLS estimator of the slope coefficient in a simple regression is a weighted average of the slopes delineated by adjacent observations. The weights depend only on the distribution of the independent variable. In this paper I demonstrate that equal weights can only be obtained if and only if the independent variable is normally distributed. This characteristic is used to develop a new test for normality which is distribution free and not sensitive to outliers. The test is compared with standard normality tests, in particular, the popular Jarque-Bera test. It is shown that the new test is a better power for testing normality against all classes of alternative distributions. Finally, the test is applied to check normality in time series data from major international financial markets.

Suggested Citation

  • Haim Shalit, 2009. "Using Ols To Test For Normality," Working Papers 0912, Ben-Gurion University of the Negev, Department of Economics.
  • Handle: RePEc:bgu:wpaper:0912
    as

    Download full text from publisher

    File URL: http://in.bgu.ac.il/en/humsos/Econ/Workingpapers/0912.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Norbert Henze & Stefan Koch, 2020. "On a test of normality based on the empirical moment generating function," Statistical Papers, Springer, vol. 61(1), pages 17-29, February.
    2. Haim Shalit, 2021. "The Shapley value decomposition of optimal portfolios," Annals of Finance, Springer, vol. 17(1), pages 1-25, March.
    3. Doron Nisani & Amit Shelef, 2021. "A statistical analysis of investor preferences for portfolio selection," Empirical Economics, Springer, vol. 61(4), pages 1883-1915, October.
    4. Haim Shalit, 2020. "The Shapley value of regression portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 21(6), pages 506-512, October.
    5. Haim Shalit, 2014. "Measuring Risk In Israeli Mutual Funds: Conditional Value-At-Risk Vs. Aumann-Serrano Riskiness Index," Working Papers 1409, Ben-Gurion University of the Negev, Department of Economics.
    6. Doron Nisani, 2023. "On the General Deviation Measure and the Gini coefficient," International Journal of Economic Theory, The International Society for Economic Theory, vol. 19(3), pages 599-610, September.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bgu:wpaper:0912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Aamer Abu-Qarn (email available below). General contact details of provider: https://edirc.repec.org/data/edbguil.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.