IDEAS home Printed from https://ideas.repec.org/p/bfr/econot/421.html

Estimating corporate carbon emissions using artificial intelligence
[Estimation par intelligence artificielle des émissions carbone des entreprises]

Author

Listed:
  • Maxime Barthe
  • Thomas Choquet
  • Tristan Jourde

Abstract

Where firms fail to disclose their carbon emissions, the data can be estimated using machine learning models, which yield better predictive performances than standard methods. When combined with human expertise, these models can fill in gaps in the data and refine the assessment of transition risk. Lorsqu’aucune donnée d’émissions carbone n’est publiée par les entreprises, cette information peut être estimée à l’aide de modèles d’apprentissage automatique, dont les performances prédictives surpassent celles des méthodes classiques. Complétés par une expertise humaine, ces modèles permettent de combler les lacunes en matière de données et d’affiner l’évaluation des risques de transition.

Suggested Citation

  • Maxime Barthe & Thomas Choquet & Tristan Jourde, 2025. "Estimating corporate carbon emissions using artificial intelligence [Estimation par intelligence artificielle des émissions carbone des entreprises]," Eco Notepad 421, Banque de France.
  • Handle: RePEc:bfr:econot:421
    as

    Download full text from publisher

    File URL: https://www.banque-france.fr/en/publications-and-statistics/publications/estimating-corporate-carbon-emissions-using-artificial-intelligence
    Download Restriction: no

    File URL: https://www.banque-france.fr/fr/publications-et-statistiques/publications/estimation-par-intelligence-artificielle-des-emissions-carbone-des-entreprises
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bfr:econot:421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael brassart (email available below). General contact details of provider: https://edirc.repec.org/data/bdfgvfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.