IDEAS home Printed from https://ideas.repec.org/p/bep/uwabio/1058.html
   My bibliography  Save this paper

On Corrected Score Approach for Proportional Hazards Model with Covariate Measurement Error

Author

Listed:
  • Xiao Song

    (University of Washington)

  • Yijian Huang

    (Division of Public Health Sciences, Fred Hutchinson Cancer Research Center)

Abstract

In the presence of covariate measurement error with the proportional hazards model, several functional modeling methods have been proposed. These include the conditional score estimator (Tsiatis and Davidian, 2001), the parametric correction estimator (Nakamura, 1992) and the nonparametric correction estimator (Huang and Wang, 2000, 2003) in the order of weaker assumptions on the error. Although they are all consistent, each suffers from potential difficulties with small samples and substantial measurement error. In this article, upon noting that the conditional score and parametric correction estimators are asymptotically equivalent in the case of normal error, we investigate their relative finite sample performance and discover that the former is superior, which may be explained by the unbiasedness of its estimating equation. This finding motivates a general refinement approach to parametric and nonparametric correction methods. The refined correction estimators are asymptotically equivalent to their standard counterparts, but have improved numerical properties. Simulation results and application to an HIV clinical trial are presented.

Suggested Citation

  • Xiao Song & Yijian Huang, 2004. "On Corrected Score Approach for Proportional Hazards Model with Covariate Measurement Error," UW Biostatistics Working Paper Series 1058, Berkeley Electronic Press.
  • Handle: RePEc:bep:uwabio:1058
    Note: oai:bepress.com:uwbiostat-1058
    as

    Download full text from publisher

    File URL: http://www.bepress.com/cgi/viewcontent.cgi?article=1058&context=uwbiostat
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Huang Y. & Wang C.Y., 2001. "Consistent Functional Methods for Logistic Regression With Errors in Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1469-1482, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao Song & Yijian Huang, 2005. "On Corrected Score Approach for Proportional Hazards Model with Covariate Measurement Error," Biometrics, The International Biometric Society, vol. 61(3), pages 702-714, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hanfelt, John J. & Li, Ruosha & Pan, Yi & Payment, Pierre, 2011. "Robust inference for sparse cluster-correlated count data," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 182-192, January.
    2. Di Shu & Grace Y. Yi, 2018. "Estimation of Causal Effect Measures in the Presence of Measurement Error in Confounders," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(1), pages 233-254, April.
    3. Zanhua Yin, 2020. "Variable selection for sparse logistic regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(7), pages 821-836, October.
    4. Li, Tong & Hsiao, Cheng, 2004. "Robust estimation of generalized linear models with measurement errors," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 51-65.
    5. Qin, Guoyou & Zhang, Jiajia & Zhu, Zhongyi, 2016. "Simultaneous mean and covariance estimation of partially linear models for longitudinal data with missing responses and covariate measurement error," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 24-39.
    6. Weiming Yang & Yiping Yang, 2020. "Composite quantile regression estimation of linear error-in-variable models using instrumental variables," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(1), pages 1-16, January.
    7. Nels G. Johnson & Inyoung Kim, 2019. "Semiparametric approaches for matched case–control studies with error-in-covariates," Computational Statistics, Springer, vol. 34(4), pages 1675-1692, December.
    8. Laurence S. Freedman & Vitaly Fainberg & Victor Kipnis & Douglas Midthune & Raymond J. Carroll, 2004. "A New Method for Dealing with Measurement Error in Explanatory Variables of Regression Models," Biometrics, The International Biometric Society, vol. 60(1), pages 172-181, March.
    9. Cheng Zheng & Yingye Zheng, 2019. "Calibrating Variations in Biomarker Measures for Improving Prediction with Time-to-event Outcomes," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 477-503, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bep:uwabio:1058. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.bepress.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.