Author
Listed:
- Yan Wang
(Division of Biostatistics, School of Public Health, University of California, Berkeley)
- Sandrine Dudoit
(Division of Biostatistics, School of Public Health, University of California, Berkeley)
Abstract
Classical measures of linkage disequilibrium (LD) between two loci, based only on the joint distribution of alleles at these loci, present noisy patterns. In this paper, we propose a new distance-based LD measure, R, which takes into account multilocus haplotypes around the two loci in order to exploit information from neighboring loci. The LD measure R yields a matrix of pairwise distances between markers, based on the correlation between the lengths of shared haplotypes among chromosomes around these markers. Data analysis demonstrates that visualization of LD patterns through the R matrix reveals more deterministic patterns, with much less noise, than using classical LD measures. Moreover, the patterns are highly compatible with recently suggested models of haplotype block structure. We propose to apply the new LD measure to define haplotype blocks through cluster analysis. Specifically, we present a distance-based clustering algorithm, DHPBlocker, which performs hierarchical partitioning of an ordered sequence of markers into disjoint and adjacent blocks with a hierarchical structure. The proposed method integrates information on the two main existing criteria in defining haplotype blocks, namely, LD and haplotype diversity, through the use of silhouette width and description length as cluster validity measures, respectively. The new LD measure and clustering procedure are applied to single nucleotide polymorphism (SNP) datasets from the human 5q31 region (Daly et al. 2001) and the class II region of the human major histocompatibility complex (Jeffreys et al. 2001). Our results are in good agreement with published results. In addition, analyses performed on different subsets of markers indicate that the method is robust with regards to the allele frequency and density of the genotyped markers. Unlike previously proposed methods, our new cluster-based method can uncover hierarchical relationships among blocks and can be applied to polymorphic DNA markers or amino acid sequence data.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bep:ucbbio:1150. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.bepress.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.