IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Mean Exit Time and Survival Probability within the CTRW Formalism

Listed author(s):
  • Miquel Montero
  • Jaume Masoliver

An intense research on financial market microstructure is presently in progress. Continuous time random walks (CTRWs) are general models capable to capture the small-scale properties that high frequency data series show. The use of CTRW models in the analysis of financial problems is quite recent and their potentials have not been fully developed. Here we present two (closely related) applications of great interest in risk control. In the first place, we will review the problem of modelling the behaviour of the mean exit time (MET) of a process out of a given region of fixed size. The surveyed stochastic processes are the cumulative returns of asset prices. The link between the value of the MET and the timescale of the market fluctuations of a certain degree is crystal clear. In this sense, MET value may help, for instance, in deciding the optimal time horizon for the investment. The MET is, however, one among the statistics of a distribution of bigger interest: the survival probability (SP), the likelihood that after some lapse of time a process remains inside the given region without having crossed its boundaries. The final part of the article is devoted to the study of this quantity. Note that the use of SPs may outperform the standard "Value at Risk" (VaR) method for two reasons: we can consider other market dynamics than the limited Wiener process and, even in this case, a risk level derived from the SP will ensure (within the desired quintile) that the quoted value of the portfolio will not leave the safety zone. We present some preliminary theoretical and applied results concerning this topic.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: Latest version
Download Restriction: no

Paper provided by in its series Papers with number physics/0607268.

in new window

Date of creation: Jul 2006
Date of revision: Oct 2006
Publication status: Published in Eur. Phys. J. B 57, 181-185 (2007)
Handle: RePEc:arx:papers:physics/0607268
Contact details of provider: Web page:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:arx:papers:physics/0607268. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.