IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2602.12043.html

Improved Inference for CSDID Using the Cluster Jackknife

Author

Listed:
  • Sunny R. Karim
  • Morten {O}rregaard Nielsen
  • James G. MacKinnon
  • Matthew D. Webb

Abstract

Obtaining reliable inferences with traditional difference-in-differences (DiD) methods can be difficult. Problems can arise when both outcomes and errors are serially correlated, when there are few clusters or few treated clusters, when cluster sizes vary greatly, and in various other cases. In recent years, recognition of the ``staggered adoption'' problem has shifted the focus away from inference towards consistent estimation of treatment effects. One of the most popular new estimators is the CSDID procedure of Callaway and Sant'Anna (2021). We find that the issues of over-rejection with few clusters and/or few treated clusters are at least as severe for CSDID as for traditional DiD methods. We also propose using a cluster jackknife for inference with CSDID, which simulations suggest greatly improves inference. We provide software packages in Stata csdidjack and R didjack to calculate cluster-jackknife standard errors easily.

Suggested Citation

  • Sunny R. Karim & Morten {O}rregaard Nielsen & James G. MacKinnon & Matthew D. Webb, 2026. "Improved Inference for CSDID Using the Cluster Jackknife," Papers 2602.12043, arXiv.org.
  • Handle: RePEc:arx:papers:2602.12043
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2602.12043
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2602.12043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.