IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2601.20533.html

Incorporating data drift to perform survival analysis on credit risk

Author

Listed:
  • Jianwei Peng

    (Humboldt-Universit\"at zu Berlin)

  • Stefan Lessmann

    (Humboldt-Universit\"at zu Berlin
    Bucharest University of Economic Studies)

Abstract

Survival analysis has become a standard approach for modelling time to default by time-varying covariates in credit risk. Unlike most existing methods that implicitly assume a stationary data-generating process, in practise, mortgage portfolios are exposed to various forms of data drift caused by changing borrower behaviour, macroeconomic conditions, policy regimes and so on. This study investigates the impact of data drift on survival-based credit risk models and proposes a dynamic joint modelling framework to improve robustness under non-stationary environments. The proposed model integrates a longitudinal behavioural marker derived from balance dynamics with a discrete-time hazard formulation, combined with landmark one-hot encoding and isotonic calibration. Three types of data drift (sudden, incremental and recurring) are simulated and analysed on mortgage loan datasets from Freddie Mac. Experiments and corresponding evidence show that the proposed landmark-based joint model consistently outperforms classical survival models, tree-based drift-adaptive learners and gradient boosting methods in terms of discrimination and calibration across all drift scenarios, which confirms the superiority of our model design.

Suggested Citation

  • Jianwei Peng & Stefan Lessmann, 2026. "Incorporating data drift to perform survival analysis on credit risk," Papers 2601.20533, arXiv.org.
  • Handle: RePEc:arx:papers:2601.20533
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2601.20533
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2601.20533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.