IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2601.19321.html

Predictive Accuracy versus Interpretability in Energy Markets: A Copula-Enhanced TVP-SVAR Analysis

Author

Listed:
  • Fredy Pokou

    (MRE, CRIStAL)

  • Jules Sadefo Kamdem

    (MRE)

  • Kpante Emmanuel Gnandi

    (ENAC-LAB)

Abstract

This paper investigates whether structural econometric models can rival machine learning in forecasting energy--macro dynamics while retaining causal interpretability. Using monthly data from 1999 to 2025, we develop a unified framework that integrates Time-Varying Parameter Structural VARs (TVP-SVAR) with advanced dependence structures, including DCC-GARCH, t-copulas, and mixed Clayton--Frank--Gumbel copulas. These models are empirically evaluated against leading machine learning techniques Gaussian Process Regression (GPR), Artificial Neural Networks, Random Forests, and Support Vector Regression across seven macro-financial and energy variables, with Brent crude oil as the central asset. The findings reveal three major insights. First, TVP-SVAR consistently outperforms standard VAR models, confirming structural instability in energy transmission channels. Second, copula-based extensions capture non-linear and tail dependence more effectively than symmetric DCC models, particularly during periods of macroeconomic stress. Third, despite their methodological differences, copula-enhanced econometric models and GPR achieve statistically equivalent predictive accuracy (t-test p = 0.8444). However, only the econometric approach provides interpretable impulse responses, regime shifts, and tail-risk diagnostics. We conclude that machine learning can replicate predictive performance but cannot substitute the explanatory power of structural econometrics. This synthesis offers a pathway where AI accuracy and economic interpretability jointly inform energy policy and risk management.

Suggested Citation

  • Fredy Pokou & Jules Sadefo Kamdem & Kpante Emmanuel Gnandi, 2026. "Predictive Accuracy versus Interpretability in Energy Markets: A Copula-Enhanced TVP-SVAR Analysis," Papers 2601.19321, arXiv.org.
  • Handle: RePEc:arx:papers:2601.19321
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2601.19321
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2601.19321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.