IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2601.18654.html

When Is Self-Disclosure Optimal? Incentives and Governance of AI-Generated Content

Author

Listed:
  • Juan Wu

    (James)

  • Zhe

    (James)

  • Zhang
  • Amit Mehra

Abstract

Generative artificial intelligence (Gen-AI) is reshaping content creation on digital platforms by reducing production costs and enabling scalable output of varying quality. In response, platforms have begun adopting disclosure policies that require creators to label AI-generated content, often supported by imperfect detection and penalties for non-compliance. This paper develops a formal model to study the economic implications of such disclosure regimes. We compare a non-disclosure benchmark, in which the platform alone detects AI usage, with a mandatory self-disclosure regime in which creators strategically choose whether to disclose or conceal AI use under imperfect enforcement. The model incorporates heterogeneous creators, viewer discounting of AI-labeled content, trust penalties following detected non-disclosure, and endogenous enforcement. The analysis shows that disclosure is optimal only when both the value of AI-generated content and its cost-saving advantage are intermediate. As AI capability improves, the platform's optimal enforcement strategy evolves from strict deterrence to partial screening and eventual deregulation. While disclosure reliably increases transparency, it reduces aggregate creator surplus and can suppress high-quality AI content when AI is technologically advanced. Overall, the results characterize disclosure as a strategic governance instrument whose effectiveness depends on technological maturity and trust frictions.

Suggested Citation

  • Juan Wu & Zhe & Zhang & Amit Mehra, 2026. "When Is Self-Disclosure Optimal? Incentives and Governance of AI-Generated Content," Papers 2601.18654, arXiv.org.
  • Handle: RePEc:arx:papers:2601.18654
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2601.18654
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2601.18654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.