IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2601.17860.html

The Hellinger Bounds on the Kullback-Leibler Divergence and the Bernstein Norm

Author

Listed:
  • Tetsuya Kaji

Abstract

The Kullback-Leibler divergence, the Kullback-Leibler variation, and the Bernstein "norm" are used to quantify discrepancies among probability distributions in likelihood models such as nonparametric maximum likelihood and nonparametric Bayes. They are closely related to the Hellinger distance, which is often easier to work with. Consequently, it is of interest to characterize conditions under which the Hellinger distance serves as an upper bound for these measures. This article characterizes a necessary and sufficient condition for each of the discrepancy measures to be bounded by the Hellinger distance. It accommodates unbounded likelihood ratios and generalizes all previously known results. We then apply it to relax the regularity condition for the sieve maximum likelihood estimator.

Suggested Citation

  • Tetsuya Kaji, 2026. "The Hellinger Bounds on the Kullback-Leibler Divergence and the Bernstein Norm," Papers 2601.17860, arXiv.org.
  • Handle: RePEc:arx:papers:2601.17860
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2601.17860
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2601.17860. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.