IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2601.17843.html

Best Feasible Conditional Critical Values for a More Powerful Subvector Anderson-Rubin Test

Author

Listed:
  • Jesse Hoekstra
  • Frank Windmeijer

Abstract

For subvector inference in the linear instrumental variables model under homoskedasticity but allowing for weak instruments, Guggenberger, Kleibergen, and Mavroeidis (2019) (GKM) propose a conditional subvector Anderson and Rubin (1949) (AR) test that uses data-dependent critical values that adapt to the strength of the parameters not under test. This test has correct size and strictly higher power than the test that uses standard asymptotic chi-square critical values. The subvector AR test is the minimum eigenvalue of a data dependent matrix. The GKM critical value function conditions on the largest eigenvalue of this matrix. We consider instead the data dependent critical value function conditioning on the second-smallest eigenvalue, as this eigenvalue is the appropriate indicator for weak identification. We find that the data dependent critical value function of GKM also applies to this conditioning and show that this test has correct size and power strictly higher than the GKM test when the number of parameters not under test is larger than one. Our proposed procedure further applies to the subvector AR test statistic that is robust to an approximate kronecker product structure of conditional heteroskedasticity as proposed by Guggenberger, Kleibergen, and Mavroeidis (2024), carrying over its power advantage to this setting as well.

Suggested Citation

  • Jesse Hoekstra & Frank Windmeijer, 2026. "Best Feasible Conditional Critical Values for a More Powerful Subvector Anderson-Rubin Test," Papers 2601.17843, arXiv.org.
  • Handle: RePEc:arx:papers:2601.17843
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2601.17843
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2601.17843. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.