IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2601.17712.html

The Proximal Surrogate Index: Long-Term Treatment Effects under Unobserved Confounding

Author

Listed:
  • Ting-Chih Hung
  • Yu-Chang Chen

Abstract

We study the identification and estimation of long-term treatment effects under unobserved confounding by combining an experimental sample, where the long-term outcome is missing, with an observational sample, where the treatment assignment is unobserved. While standard surrogate index methods fail when unobserved confounders exist, we establish novel identification results by leveraging proxy variables for the unobserved confounders. We further develop multiply robust estimation and inference procedures based on these results. Applying our method to the Job Corps program, we demonstrate its ability to recover experimental benchmarks even when unobserved confounders bias standard surrogate index estimates.

Suggested Citation

  • Ting-Chih Hung & Yu-Chang Chen, 2026. "The Proximal Surrogate Index: Long-Term Treatment Effects under Unobserved Confounding," Papers 2601.17712, arXiv.org.
  • Handle: RePEc:arx:papers:2601.17712
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2601.17712
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2601.17712. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.