IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2601.17527.html

Bridging Expectation Signals: LLM-Based Experiments and a Behavioral Kalman Filter Framework

Author

Listed:
  • Yu Wang
  • Xiangchen Liu

Abstract

As LLMs increasingly function as economic agents, the specific mechanisms LLMs use to update their belief with heterogeneous signals remain opaque. We design experiments and develop a Behavioral Kalman Filter framework to quantify how LLM-based agents update expectations, acting as households or firm CEOs, update expectations when presented with individual and aggregate signals. The results from experiments and model estimation reveal four consistent patterns: (1) agents' weighting of priors and signals deviates from unity; (2) both household and firm CEO agents place substantially larger weights on individual signals compared to aggregate signals; (3) we identify a significant and negative interaction between concurrent signals, implying that the presence of multiple information sources diminishes the marginal weight assigned to each individual signal; and (4) expectation formation patterns differ significantly between household and firm CEO agents. Finally, we demonstrate that LoRA fine-tuning mitigates, but does not fully eliminate, behavioral biases in LLM expectation formation.

Suggested Citation

  • Yu Wang & Xiangchen Liu, 2026. "Bridging Expectation Signals: LLM-Based Experiments and a Behavioral Kalman Filter Framework," Papers 2601.17527, arXiv.org.
  • Handle: RePEc:arx:papers:2601.17527
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2601.17527
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2601.17527. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.